Data Subdivision Based Dual-Weighted Robust Principal Component Analysis

Sisi Wang;Feiping Nie;Zheng Wang;Rong Wang;Xuelong Li
{"title":"Data Subdivision Based Dual-Weighted Robust Principal Component Analysis","authors":"Sisi Wang;Feiping Nie;Zheng Wang;Rong Wang;Xuelong Li","doi":"10.1109/TIP.2025.3536197","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is one of the most important unsupervised dimensionality reduction algorithms, which uses squared <inline-formula> <tex-math>$\\ell _{2}$ </tex-math></inline-formula>-norm to make it very sensitive to outliers. Those improved versions based on <inline-formula> <tex-math>$\\ell _{1}$ </tex-math></inline-formula>-norm alleviate this problem, but they have other shortcomings, such as optimization difficulties or lack of rotational invariance, etc. Besides, existing methods only vaguely divide normal samples and outliers to improve robustness, but they ignore the fact that normal samples can be more specifically divided into positive samples and hard samples, which should have different contributions to the model because positive samples are more conducive to learning the projection matrix. In this paper, we propose a novel Data Subdivision Based Dual-Weighted Robust Principal Component Analysis, namely DRPCA, which firstly designs a mark vector to distinguish normal samples and outliers, and directly removes outliers according to mark weights. Moreover, we further divide normal samples into positive samples and hard samples by self-constrained weights, and place them in relative positions, so that the weight of positive samples is larger than hard samples, which makes the projection matrix more accurate. Additionally, the optimal mean is employed to obtain a more accurate data center. To solve this problem, we carefully design an effective iterative algorithm and analyze its convergence. Experiments on real-world and RGB large-scale datasets demonstrate the superiority of our method in dimensionality reduction and anomaly detection.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1271-1284"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10878426/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Principal Component Analysis (PCA) is one of the most important unsupervised dimensionality reduction algorithms, which uses squared $\ell _{2}$ -norm to make it very sensitive to outliers. Those improved versions based on $\ell _{1}$ -norm alleviate this problem, but they have other shortcomings, such as optimization difficulties or lack of rotational invariance, etc. Besides, existing methods only vaguely divide normal samples and outliers to improve robustness, but they ignore the fact that normal samples can be more specifically divided into positive samples and hard samples, which should have different contributions to the model because positive samples are more conducive to learning the projection matrix. In this paper, we propose a novel Data Subdivision Based Dual-Weighted Robust Principal Component Analysis, namely DRPCA, which firstly designs a mark vector to distinguish normal samples and outliers, and directly removes outliers according to mark weights. Moreover, we further divide normal samples into positive samples and hard samples by self-constrained weights, and place them in relative positions, so that the weight of positive samples is larger than hard samples, which makes the projection matrix more accurate. Additionally, the optimal mean is employed to obtain a more accurate data center. To solve this problem, we carefully design an effective iterative algorithm and analyze its convergence. Experiments on real-world and RGB large-scale datasets demonstrate the superiority of our method in dimensionality reduction and anomaly detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iris Geometric Transformation Guided Deep Appearance-Based Gaze Estimation Decoupled Doubly Contrastive Learning for Cross Domain Facial Action Unit Detection. Global Cross-Entropy Loss for Deep Face Recognition Uncertainty-Driven Parallel Transformer-Based Segmentation for Oral Disease Dataset Denoised and Dynamic Alignment Enhancement for Zero-Shot Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1