Shell-Guided Compression of Voxel Radiance Fields

Peiqi Yang;Zhangkai Ni;Hanli Wang;Wenhan Yang;Shiqi Wang;Sam Kwong
{"title":"Shell-Guided Compression of Voxel Radiance Fields","authors":"Peiqi Yang;Zhangkai Ni;Hanli Wang;Wenhan Yang;Shiqi Wang;Sam Kwong","doi":"10.1109/TIP.2025.3538163","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenge of significant memory consumption and redundant components in large-scale voxel-based model, which are commonly encountered in real-world 3D reconstruction scenarios. We propose a novel method called Shell-guided compression of Voxel Radiance Fields (SVRF), aimed at optimizing voxel-based model into a shell-like structure to reduce storage costs while maintaining rendering accuracy. Specifically, we first introduce a Shell-like Constraint, operating in two main aspects: 1) enhancing the influence of voxels neighboring the surface in determining the rendering outcomes, and 2) expediting the elimination of redundant voxels both inside and outside the surface. Additionally, we introduce an Adaptive Thresholds to ensure appropriate pruning criteria for different scenes. To prevent the erroneous removal of essential object parts, we further employ a Dynamic Pruning Strategy to conduct smooth and precise model pruning during training. The compression method we propose does not necessitate the use of additional labels. It merely requires the guidance of self-supervised learning based on predicted depth. Furthermore, it can be seamlessly integrated into any voxel-grid-based method. Extensive experimental results demonstrate that our method achieves comparable rendering quality while compressing the original number of voxel grids by more than 70%. Our code will be available at: <uri>https://github.com/eezkni/SVRF</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1179-1191"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10879387/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the challenge of significant memory consumption and redundant components in large-scale voxel-based model, which are commonly encountered in real-world 3D reconstruction scenarios. We propose a novel method called Shell-guided compression of Voxel Radiance Fields (SVRF), aimed at optimizing voxel-based model into a shell-like structure to reduce storage costs while maintaining rendering accuracy. Specifically, we first introduce a Shell-like Constraint, operating in two main aspects: 1) enhancing the influence of voxels neighboring the surface in determining the rendering outcomes, and 2) expediting the elimination of redundant voxels both inside and outside the surface. Additionally, we introduce an Adaptive Thresholds to ensure appropriate pruning criteria for different scenes. To prevent the erroneous removal of essential object parts, we further employ a Dynamic Pruning Strategy to conduct smooth and precise model pruning during training. The compression method we propose does not necessitate the use of additional labels. It merely requires the guidance of self-supervised learning based on predicted depth. Furthermore, it can be seamlessly integrated into any voxel-grid-based method. Extensive experimental results demonstrate that our method achieves comparable rendering quality while compressing the original number of voxel grids by more than 70%. Our code will be available at: https://github.com/eezkni/SVRF
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iris Geometric Transformation Guided Deep Appearance-Based Gaze Estimation Decoupled Doubly Contrastive Learning for Cross Domain Facial Action Unit Detection. Global Cross-Entropy Loss for Deep Face Recognition Uncertainty-Driven Parallel Transformer-Based Segmentation for Oral Disease Dataset Denoised and Dynamic Alignment Enhancement for Zero-Shot Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1