Design and characterization of an adaptive polymer electrolyte for lithium metal solid-state battery applications†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2025-02-11 DOI:10.1039/D4TA08556F
Matthew Newman, Jian Liu, Hoyeon Jang, Rinky Ghosh, Sriloy Dey, Hanna Cho, Yael Vodovotz, Jay Sayre and Marcello Canova
{"title":"Design and characterization of an adaptive polymer electrolyte for lithium metal solid-state battery applications†","authors":"Matthew Newman, Jian Liu, Hoyeon Jang, Rinky Ghosh, Sriloy Dey, Hanna Cho, Yael Vodovotz, Jay Sayre and Marcello Canova","doi":"10.1039/D4TA08556F","DOIUrl":null,"url":null,"abstract":"<p >A major challenge for Li-metal solid-state batteries (LIMSSBs) lies in the mechanical degradation of the solid interface between Li-metal and the solid electrolyte. This work focuses on the synthesis and electrochemomechanical characterization of an adaptive polymer electrolyte (A-PE) that could potentially be applied as an interlayer to stabilize the interfacial contact between the lithium metal anode and the solid electrolyte, mitigating the effects of void formation leading to contact loss. The A-PE operates based on the principle of utilizing the polarization of conducting polymer particles, polypyrrole doped with dodecylbenzenesulfonate (PPy(DBS)), to impart adaptive properties to a polymer electrolyte matrix. The A-PE was synthesized <em>via</em> hot pressing and subsequent UV polymerization resulting in free-standing films with various amounts of PPy(DBS) and ionic conductivities in the range of 0.11–0.16 mS cm<small><sup>−1</sup></small> at 25 °C. Film characterizations included insoluble fraction, mechanical response under electric field, and Li symmetric cycling with intermittent electrochemical impedance spectroscopy (EIS). The measured mechanical responses of the film were expansion with atomic force microscopy (AFM) and block force response by exciting the film with electric field of variable strength. The results obtained suggest that the addition of PPy(DBS) particles provides adaptive capability in polymer electrolytes at room temperature (20–25 °C), with an expansion response of up to 6% strain with 1 wt% PPy(DBS) at an electric field strength of 0.3 V μm<small><sup>−1</sup></small>. The results indicate that the A-PE shows promise for application as an interlayer in LIMSSBs, with the potential to reduce mechanical degradation at the lithium metal–solid electrolyte interface and enhance durability by expanding to maintain contact with the lithium metal anode.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 11","pages":" 7914-7928"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta08556f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08556f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge for Li-metal solid-state batteries (LIMSSBs) lies in the mechanical degradation of the solid interface between Li-metal and the solid electrolyte. This work focuses on the synthesis and electrochemomechanical characterization of an adaptive polymer electrolyte (A-PE) that could potentially be applied as an interlayer to stabilize the interfacial contact between the lithium metal anode and the solid electrolyte, mitigating the effects of void formation leading to contact loss. The A-PE operates based on the principle of utilizing the polarization of conducting polymer particles, polypyrrole doped with dodecylbenzenesulfonate (PPy(DBS)), to impart adaptive properties to a polymer electrolyte matrix. The A-PE was synthesized via hot pressing and subsequent UV polymerization resulting in free-standing films with various amounts of PPy(DBS) and ionic conductivities in the range of 0.11–0.16 mS cm−1 at 25 °C. Film characterizations included insoluble fraction, mechanical response under electric field, and Li symmetric cycling with intermittent electrochemical impedance spectroscopy (EIS). The measured mechanical responses of the film were expansion with atomic force microscopy (AFM) and block force response by exciting the film with electric field of variable strength. The results obtained suggest that the addition of PPy(DBS) particles provides adaptive capability in polymer electrolytes at room temperature (20–25 °C), with an expansion response of up to 6% strain with 1 wt% PPy(DBS) at an electric field strength of 0.3 V μm−1. The results indicate that the A-PE shows promise for application as an interlayer in LIMSSBs, with the potential to reduce mechanical degradation at the lithium metal–solid electrolyte interface and enhance durability by expanding to maintain contact with the lithium metal anode.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Designing iron-doped basic magnesium sulfate photocatalyst for wide spectral photoresponse and superior catalytic activity Enhanced photocatalytic performance of g-C3N4 by introducing gradient energy band structure and activated n-π* electronic transition for visible light hydrogen generation Advancing C–C Coupling of Electrocatalytic CO2 Reduction Reaction for C2+ Products Data-driven insights into protonic-ceramic fuel cell and electrolysis performance TiO2 nanotube-coated hierarchical SiC nanowires as novel electrode materials with enhanced electrochemical performances for supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1