Establishment of a machine learning model for predicting splenic hilar lymph node metastasis

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2025-02-11 DOI:10.1038/s41746-025-01480-x
Kenichi Ishizu, Satoshi Takahashi, Nobuji Kouno, Ken Takasawa, Katsuji Takeda, Kota Matsui, Masashi Nishino, Tsutomu Hayashi, Yukinori Yamagata, Shigeyuki Matsui, Takaki Yoshikawa, Ryuji Hamamoto
{"title":"Establishment of a machine learning model for predicting splenic hilar lymph node metastasis","authors":"Kenichi Ishizu, Satoshi Takahashi, Nobuji Kouno, Ken Takasawa, Katsuji Takeda, Kota Matsui, Masashi Nishino, Tsutomu Hayashi, Yukinori Yamagata, Shigeyuki Matsui, Takaki Yoshikawa, Ryuji Hamamoto","doi":"10.1038/s41746-025-01480-x","DOIUrl":null,"url":null,"abstract":"<p>Upper gastrointestinal cancer (UGC) sometimes metastasizes to the splenic hilum lymph node (SHLN). However, surgical removal of SHLN is technically difficult, and the risk of postoperative complications is high. Although there are models that predict SHLN metastasis, they usually only provide point estimates of risk, and there is a lack of sufficient information. To address this issue, we aimed to develop a Bayesian logistic regression model called Bayes-SHLNM. The performance of the models was compared with that of the frequentist logistic regression (FLR) model as a benchmark, and the posterior probability distribution (PPD) was shown individually. The performance of Bayes-SHLNM was equivalent to that of the FLR model, and the PPD for each case was visualized as the uncertainty. These results indicate that the Bayes-SHLNM model has the potential to be used as a decision support system in clinical settings where uncertainty is high.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"13 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01480-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Upper gastrointestinal cancer (UGC) sometimes metastasizes to the splenic hilum lymph node (SHLN). However, surgical removal of SHLN is technically difficult, and the risk of postoperative complications is high. Although there are models that predict SHLN metastasis, they usually only provide point estimates of risk, and there is a lack of sufficient information. To address this issue, we aimed to develop a Bayesian logistic regression model called Bayes-SHLNM. The performance of the models was compared with that of the frequentist logistic regression (FLR) model as a benchmark, and the posterior probability distribution (PPD) was shown individually. The performance of Bayes-SHLNM was equivalent to that of the FLR model, and the PPD for each case was visualized as the uncertainty. These results indicate that the Bayes-SHLNM model has the potential to be used as a decision support system in clinical settings where uncertainty is high.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脾门淋巴结转移预测的机器学习模型的建立
上消化道癌(UGC)有时转移到脾门淋巴结(SHLN)。然而,手术切除SHLN在技术上是困难的,术后并发症的风险很高。虽然有预测SHLN转移的模型,但它们通常只提供风险的点估计,而且缺乏足够的信息。为了解决这个问题,我们的目标是开发一个名为Bayes-SHLNM的贝叶斯逻辑回归模型。将模型的性能与频率逻辑回归(FLR)模型的性能进行了比较,并分别给出了后验概率分布(PPD)。Bayes-SHLNM的性能与FLR模型相当,并将每种情况下的PPD可视化为不确定性。这些结果表明,贝叶斯- shlnm模型有潜力被用作不确定性高的临床环境中的决策支持系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Artificial intelligence–enhanced microsurgical training: a systematic review CancerLLM: a large language model in cancer domain Reply to determining MCID threshold for Knee Society Score to assess patient satisfaction in knee arthroplasty Robust and interpretable unit level causal inference in neural networks for pediatric myopia Large language models in systematic review and meta-analysis of surgical treatments for vaginal vault prolapse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1