Hierarchical AttentionShift for Pointly Supervised Instance Segmentation

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2025-02-10 DOI:10.1109/TNNLS.2025.3526961
Mingxiang Liao;Fang Wan;Zonghao Guo;Qixiang Ye
{"title":"Hierarchical AttentionShift for Pointly Supervised Instance Segmentation","authors":"Mingxiang Liao;Fang Wan;Zonghao Guo;Qixiang Ye","doi":"10.1109/TNNLS.2025.3526961","DOIUrl":null,"url":null,"abstract":"Pointly supervised instance segmentation (PSIS) remains a challenging task when appearance variances across object parts cause semantic inconsistency. In this article, we propose a hierarchical AttentionShift approach, to solve the semantic inconsistency issue through exploiting the hierarchical nature of semantics and the flexibility of key-point representation. The estimation of hierarchical attention is defined upon key-point sets. The representative key points are iteratively estimated spatially and in the feature space to capture the fine-grained semantics and cover the full object extent. Hierarchical AttentionShift is performed at instance, part, and fine-grained levels, optimizing object semantics while promoting the conventional self-attention activation to hierarchical activation with local refinement. Experiments on PASCAL VOC 2012 Aug and MS-COCO 2017 benchmarks show that hierarchical AttentionShift improves the state-of-the-art (SOTA) method by 10.4% and 7.0% upon mean average precision (mAP)50, respectively. When applying hierarchical AttentionShift to the segment anything model (SAM), 9.4% AP improvement on the COCO test-dev is achieved. Hierarchical AttentionShift provides a fresh insight to regularize the self-attention mechanism for fine-grained vision tasks. The code is available at github.com/MingXiangL/AttentionShift.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 8","pages":"15528-15541"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10879127/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pointly supervised instance segmentation (PSIS) remains a challenging task when appearance variances across object parts cause semantic inconsistency. In this article, we propose a hierarchical AttentionShift approach, to solve the semantic inconsistency issue through exploiting the hierarchical nature of semantics and the flexibility of key-point representation. The estimation of hierarchical attention is defined upon key-point sets. The representative key points are iteratively estimated spatially and in the feature space to capture the fine-grained semantics and cover the full object extent. Hierarchical AttentionShift is performed at instance, part, and fine-grained levels, optimizing object semantics while promoting the conventional self-attention activation to hierarchical activation with local refinement. Experiments on PASCAL VOC 2012 Aug and MS-COCO 2017 benchmarks show that hierarchical AttentionShift improves the state-of-the-art (SOTA) method by 10.4% and 7.0% upon mean average precision (mAP)50, respectively. When applying hierarchical AttentionShift to the segment anything model (SAM), 9.4% AP improvement on the COCO test-dev is achieved. Hierarchical AttentionShift provides a fresh insight to regularize the self-attention mechanism for fine-grained vision tasks. The code is available at github.com/MingXiangL/AttentionShift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点监督实例分割的层次注意力转移
当对象部分之间的外观差异导致语义不一致时,点监督实例分割(PSIS)仍然是一项具有挑战性的任务。在本文中,我们提出了一种分层的注意力转移方法,通过利用语义的分层性质和关键点表示的灵活性来解决语义不一致问题。在关键点集上定义了层次注意力的估计。在空间和特征空间中迭代估计具有代表性的关键点,以捕获细粒度语义并覆盖整个对象范围。Hierarchical AttentionShift在实例、部分和细粒度级别执行,优化对象语义,同时将传统的自注意激活提升为具有局部细化的分层激活。在PASCAL VOC 2012 Aug和MS-COCO 2017基准上的实验表明,在平均精度(mAP)为50的情况下,分层注意力转移方法将最先进的(SOTA)方法分别提高了10.4%和7.0%。当对分段任何模型(SAM)应用分层的AttentionShift时,在COCO测试开发上实现了9.4%的AP改进。分层注意力转移为规范细粒度视觉任务的自注意机制提供了新的视角。代码可在github.com/MingXiangL/AttentionShift上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
Neural-Adaptive Finite-Time Consensus Tracking of Singular Multiagent Systems With Actuator Attack Class-Incremental Cloud-Device Collaborative Adaptation With Contrastive Learning in Dynamic Changing Environments. ATTE: An Innovative Ensemble Learning Method With Age-Group-Guided Fine-Tuning for Improving Personalized Blood Pressure Estimation Resource-Efficient and Layer Interdependence-Aware CNN Pruning Leveraging Filter Replacement. Logits-Level Balanced Machine Unlearning for LLM-Based Recommendation System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1