Convection-Diffusion Equation: A Theoretically Certified Framework for Neural Networks

Tangjun Wang;Chenglong Bao;Zuoqiang Shi
{"title":"Convection-Diffusion Equation: A Theoretically Certified Framework for Neural Networks","authors":"Tangjun Wang;Chenglong Bao;Zuoqiang Shi","doi":"10.1109/TPAMI.2025.3540310","DOIUrl":null,"url":null,"abstract":"Differential equations have demonstrated intrinsic connections to network structures, linking discrete network layers through continuous equations. Most existing approaches focus on the interaction between ordinary differential equations (ODEs) and feature transformations, primarily working on input signals. In this paper, we study the partial differential equation (PDE) model of neural networks, viewing the neural network as a functional operating on a base model provided by the last layer of the classifier. Inspired by scale-space theory, we theoretically prove that this mapping can be formulated by a convection-diffusion equation, under interpretable and intuitive assumptions from both neural network and PDE perspectives. This theoretically certified framework covers various existing network structures and training techniques, offering a mathematical foundation and new insights into neural networks. Moreover, based on the convection-diffusion equation model, we design a new network structure that incorporates a diffusion mechanism into the network architecture from a PDE perspective. Extensive experiments on benchmark datasets and real-world applications confirm the effectiveness of the proposed model.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 5","pages":"4170-4182"},"PeriodicalIF":18.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10878813/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Differential equations have demonstrated intrinsic connections to network structures, linking discrete network layers through continuous equations. Most existing approaches focus on the interaction between ordinary differential equations (ODEs) and feature transformations, primarily working on input signals. In this paper, we study the partial differential equation (PDE) model of neural networks, viewing the neural network as a functional operating on a base model provided by the last layer of the classifier. Inspired by scale-space theory, we theoretically prove that this mapping can be formulated by a convection-diffusion equation, under interpretable and intuitive assumptions from both neural network and PDE perspectives. This theoretically certified framework covers various existing network structures and training techniques, offering a mathematical foundation and new insights into neural networks. Moreover, based on the convection-diffusion equation model, we design a new network structure that incorporates a diffusion mechanism into the network architecture from a PDE perspective. Extensive experiments on benchmark datasets and real-world applications confirm the effectiveness of the proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对流-扩散方程:神经网络的理论框架
微分方程已经证明了与网络结构的内在联系,通过连续方程将离散的网络层连接起来。大多数现有的方法侧重于常微分方程(ode)和特征变换之间的相互作用,主要处理输入信号。在本文中,我们研究了神经网络的偏微分方程(PDE)模型,将神经网络看作是在由最后一层分类器提供的基础模型上运行的函数。在尺度空间理论的启发下,我们从理论上证明了这种映射可以用一个对流-扩散方程来表述,并且从神经网络和PDE的角度给出了可解释和直观的假设。这个理论认证的框架涵盖了各种现有的网络结构和训练技术,为神经网络提供了数学基础和新的见解。此外,在对流扩散方程模型的基础上,从PDE的角度设计了一种新的网络结构,将扩散机制融入到网络结构中。在基准数据集和实际应用上的大量实验证实了所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models. Neural Eigenfunctions are Structured Representation Learners. Distribution-to-Points Matching for Image Text Retrieval. Penny-Wise and Pound-Foolish in AI-Generated Image Detection. Enhancing Adversarial Transferability with Cost-efficient Landscape Flattening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1