Parameterized complexity of dominating set variants in almost cluster and split graphs

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE Journal of Computer and System Sciences Pub Date : 2025-02-03 DOI:10.1016/j.jcss.2025.103631
Dishant Goyal , Ashwin Jacob , Kaushtubh Kumar , Diptapriyo Majumdar , Venkatesh Raman
{"title":"Parameterized complexity of dominating set variants in almost cluster and split graphs","authors":"Dishant Goyal ,&nbsp;Ashwin Jacob ,&nbsp;Kaushtubh Kumar ,&nbsp;Diptapriyo Majumdar ,&nbsp;Venkatesh Raman","doi":"10.1016/j.jcss.2025.103631","DOIUrl":null,"url":null,"abstract":"<div><div>We consider structural parameterizations of several variants of <span>Dominating Set</span> in the parameter ecology program. We give improved FPT algorithms and lower bounds under well-known conjectures for <span>Dominating Set</span> and its variants in graphs that are <em>k</em> vertices away from a cluster graph or a split graph. These are graphs in which there is a set of <em>k</em> vertices (called the modulator) whose deletion results in a cluster graph or a split graph. We also call <em>k</em> as the deletion distance (to the appropriate class of graphs). For example, we show that when parameterized by the deletion distance <em>k</em> to cluster graphs: <span>Dominating Set</span>, <span>Independent Dominating Set</span>, <span>Dominating Clique</span>, <span>Efficient Dominating Set</span> and <span>Total Dominating Set</span> can be solved in <span><math><msup><mrow><mn>3</mn></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time. Additionally, when parameterized by the deletion distance <em>k</em> to split graphs, we prove that <span>Efficient Dominating Set</span> can be solved in <span><math><msup><mrow><mn>3</mn></mrow><mrow><mi>k</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time breaking the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span> barrier.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"150 ","pages":"Article 103631"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000133","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We consider structural parameterizations of several variants of Dominating Set in the parameter ecology program. We give improved FPT algorithms and lower bounds under well-known conjectures for Dominating Set and its variants in graphs that are k vertices away from a cluster graph or a split graph. These are graphs in which there is a set of k vertices (called the modulator) whose deletion results in a cluster graph or a split graph. We also call k as the deletion distance (to the appropriate class of graphs). For example, we show that when parameterized by the deletion distance k to cluster graphs: Dominating Set, Independent Dominating Set, Dominating Clique, Efficient Dominating Set and Total Dominating Set can be solved in 3knO(1)-time. Additionally, when parameterized by the deletion distance k to split graphs, we prove that Efficient Dominating Set can be solved in 3k/2nO(1)-time breaking the 2k barrier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
期刊最新文献
Induced tree covering and the generalized Yutsis property Languages given by finite automata over the unary alphabet Dominator coloring and CD coloring in almost cluster graphs The complexity of transitively orienting temporal graphs How similar are two elections?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1