{"title":"Management and control strategy of multiple frequency powers in multifrequency microgrid","authors":"Rajdip Dey, Shabari Nath","doi":"10.1016/j.ref.2025.100681","DOIUrl":null,"url":null,"abstract":"<div><div>Multifrequency microgrid (MFMG) is a unique microgrid which has more than one frequency component superimposed on the bus is examined in this paper. There are three basic ideas behind MFMG which are orthogonal power flow theory, superposition theorem, and frequency selectivity criteria. It overcomes various disadvantages of traditional AC and DC microgrids and has many new features.</div><div>In MFMG, several frequency currents and voltages are superimposed on the multifrequency (MF) bus. The customers can select any available frequency currents at the load side. In MFMG, power is absorbed in different frequencies at load side and it creates different active and reactive power imbalance situations in MFMG. In existing literature, there is no analysis of the power imbalance of MFMG and the existing power control methods of microgrids cannot solve this problem. This paper bridges the gap by analyzing different power imbalance cases due to frequency selectivity criteria and proposes new control strategies to balance different frequency active and reactive powers in islanded and grid connected modes. The power balancing strategies are verified with 7 bus primitive MFMG structures in the Matlab Simulink environment.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"53 ","pages":"Article 100681"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008425000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Multifrequency microgrid (MFMG) is a unique microgrid which has more than one frequency component superimposed on the bus is examined in this paper. There are three basic ideas behind MFMG which are orthogonal power flow theory, superposition theorem, and frequency selectivity criteria. It overcomes various disadvantages of traditional AC and DC microgrids and has many new features.
In MFMG, several frequency currents and voltages are superimposed on the multifrequency (MF) bus. The customers can select any available frequency currents at the load side. In MFMG, power is absorbed in different frequencies at load side and it creates different active and reactive power imbalance situations in MFMG. In existing literature, there is no analysis of the power imbalance of MFMG and the existing power control methods of microgrids cannot solve this problem. This paper bridges the gap by analyzing different power imbalance cases due to frequency selectivity criteria and proposes new control strategies to balance different frequency active and reactive powers in islanded and grid connected modes. The power balancing strategies are verified with 7 bus primitive MFMG structures in the Matlab Simulink environment.