Scale-up of a BTX electrochemically assisted reactive absorption

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Electroanalytical Chemistry Pub Date : 2025-02-07 DOI:10.1016/j.jelechem.2025.118998
Bryan A. Tiban-Anrango, Andrea N. Arias-Sánchez, Justo Lobato, Manuel A. Rodrigo
{"title":"Scale-up of a BTX electrochemically assisted reactive absorption","authors":"Bryan A. Tiban-Anrango,&nbsp;Andrea N. Arias-Sánchez,&nbsp;Justo Lobato,&nbsp;Manuel A. Rodrigo","doi":"10.1016/j.jelechem.2025.118998","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical technologies have proven highly efficient in remediating polluted gas with benzene, toluene, and xylene (BTX). However, their scalability has yet to be explored to determine the best configurations to maintain optimal removals and energetic efficiencies. Here, we report a straightforward scale-up of an electro-absorption process that combines the absorption of BTX in 0.05 M H<sub>2</sub>SO<sub>4</sub> (electrolyte) and their electrochemical oxidation in the electrolyte. The electrochemical cell was upsized by stacking eight single-compartment cells, permitting the circulation of the absorbent in series. The results showed the successful removal of BTX from a synthetic gas stream, which increased at high current densities and low gas flow rates. Average removals over 60 % were achieved in the electro-absorption with 50 mA cm<sup>−2</sup>. Analysis of the contaminants in the electrolyte confirmed the absorption of BTXs and their electrochemical oxidation by mineralisation, which was enhanced at larger gas flows and current densities. Nevertheless, a comparison of equivalent scaled and baseline systems indicated an inferior current efficiency on the larger scale due to mass transfer inefficiencies, which are affected by circulating the absorbent in series. These findings suggest that the replication of single electrochemical cells (parallel) can optimise the performance of the electro-absorption degradation of BTX at larger scales.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"981 ","pages":"Article 118998"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725000712","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical technologies have proven highly efficient in remediating polluted gas with benzene, toluene, and xylene (BTX). However, their scalability has yet to be explored to determine the best configurations to maintain optimal removals and energetic efficiencies. Here, we report a straightforward scale-up of an electro-absorption process that combines the absorption of BTX in 0.05 M H2SO4 (electrolyte) and their electrochemical oxidation in the electrolyte. The electrochemical cell was upsized by stacking eight single-compartment cells, permitting the circulation of the absorbent in series. The results showed the successful removal of BTX from a synthetic gas stream, which increased at high current densities and low gas flow rates. Average removals over 60 % were achieved in the electro-absorption with 50 mA cm−2. Analysis of the contaminants in the electrolyte confirmed the absorption of BTXs and their electrochemical oxidation by mineralisation, which was enhanced at larger gas flows and current densities. Nevertheless, a comparison of equivalent scaled and baseline systems indicated an inferior current efficiency on the larger scale due to mass transfer inefficiencies, which are affected by circulating the absorbent in series. These findings suggest that the replication of single electrochemical cells (parallel) can optimise the performance of the electro-absorption degradation of BTX at larger scales.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩大 BTX 电化学辅助反应吸收的规模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
期刊最新文献
Graphene oxide enhanced Iron‑carbon aerogel electrodes for heterogeneous electro-Fenton oxidation of phenol Electrocatalytic hydrodechlorination on Pd composite electrode: Oxygen defect engineering of cobalt oxide as functional interlayer Saturated lithium oxalate solution for surface optimization of Ni-rich cathodes during water-washing processes RuCo alloy-loaded starch-based carbon aerogel: A self-supported Electrocatalyst for efficient hydrogen evolution in alkaline saline water Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1