Multiple dikes make eruptions easy

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Volcanology and Geothermal Research Pub Date : 2025-02-03 DOI:10.1016/j.jvolgeores.2025.108284
Agust Gudmundsson
{"title":"Multiple dikes make eruptions easy","authors":"Agust Gudmundsson","doi":"10.1016/j.jvolgeores.2025.108284","DOIUrl":null,"url":null,"abstract":"<div><div>Dikes supply magma to most volcanic eruptions. Understanding how propagating dikes may, or may not, reach the surface is thus one of the fundamental tasks for volcanology. Many, perhaps most, dike segments injected from magma sources do not reach the surface to feed volcanic eruptions. Instead, the dike segments become arrested (stop their propagation), commonly at or close to contacts between mechanically dissimilar layers/units, at various crustal depths. This means that many and perhaps most volcanic unrest periods with dike injections do not result in eruptions. There are several conditions that make dike arrest likely, but the main one is layering where the layers have contrasting mechanical properties. Such layering means that local stresses are heterogeneous and anisotropic and, therefore, in some layers unfavourable for dike propagation – hence the dike arrest. Here I show that once a dike has formed, however, its very existence tends to make the local stress field along the dike homogeneous (with invariable orientation of principal stresses) and favourable (with dike-parallel orientation of the maximum compressive principal stress) for later dike injections. This means that subsequence dikes may use an earlier dike as a path, either along the margin or the centre of the earlier dike, thereby generating a multiple dike. Because earlier feeder-dikes form potential paths for later-injected dikes to the surface, many volcanic eruptions are fed by multiple dikes. Examples include recent eruptions in the volcanoes Etna (Italy) and Kilauea (Hawaii), and the Icelandic volcanoes Krafla, Hekla, Fagradalsfjall, and the Sundhnukur crater row. Thus, multiple dikes favour dike propagation to the surface; thereby making dike-fed eruptions easier.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"460 ","pages":"Article 108284"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027325000204","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dikes supply magma to most volcanic eruptions. Understanding how propagating dikes may, or may not, reach the surface is thus one of the fundamental tasks for volcanology. Many, perhaps most, dike segments injected from magma sources do not reach the surface to feed volcanic eruptions. Instead, the dike segments become arrested (stop their propagation), commonly at or close to contacts between mechanically dissimilar layers/units, at various crustal depths. This means that many and perhaps most volcanic unrest periods with dike injections do not result in eruptions. There are several conditions that make dike arrest likely, but the main one is layering where the layers have contrasting mechanical properties. Such layering means that local stresses are heterogeneous and anisotropic and, therefore, in some layers unfavourable for dike propagation – hence the dike arrest. Here I show that once a dike has formed, however, its very existence tends to make the local stress field along the dike homogeneous (with invariable orientation of principal stresses) and favourable (with dike-parallel orientation of the maximum compressive principal stress) for later dike injections. This means that subsequence dikes may use an earlier dike as a path, either along the margin or the centre of the earlier dike, thereby generating a multiple dike. Because earlier feeder-dikes form potential paths for later-injected dikes to the surface, many volcanic eruptions are fed by multiple dikes. Examples include recent eruptions in the volcanoes Etna (Italy) and Kilauea (Hawaii), and the Icelandic volcanoes Krafla, Hekla, Fagradalsfjall, and the Sundhnukur crater row. Thus, multiple dikes favour dike propagation to the surface; thereby making dike-fed eruptions easier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
13.80%
发文量
183
审稿时长
19.7 weeks
期刊介绍: An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society. Submission of papers covering the following aspects of volcanology and geothermal research are encouraged: (1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations. (2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis. (3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization. (4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing. (5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts. (6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.
期刊最新文献
Comprehensive orientation method using cross-line laser: A case study of paleomagnetic analysis on pyroclastic deposits from Asama Volcano (Japan) The spatiotemporal development of downsag and trapdoor structures during caldera subsidence with 1–10 km in diameter in analogue sandbox experiments Microearthquakes identification based on convolutional neural networks and clustering techniques Development of permeable networks by viscous-brittle deformation in a shallow rhyolite intrusion. Part 2: Microstructural analysis Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1