Bayesian Optimization Framework for Channel Simulation-Based Base Station Placement and Transmission Power Design

Koya Sato;Katsuya Suto
{"title":"Bayesian Optimization Framework for Channel Simulation-Based Base Station Placement and Transmission Power Design","authors":"Koya Sato;Katsuya Suto","doi":"10.1109/LNET.2024.3469175","DOIUrl":null,"url":null,"abstract":"This letter proposes an adaptive experimental design framework for a channel-simulation-based base station (BS) design that supports the joint optimization of transmission power and placement. We consider a system in which multiple transmitters provide wireless services over a shared frequency band. Our objective is to maximize the average throughput within an area of interest. System operators can design the system configurations prior to deployment by iterating them through channel simulations and updating the parameters. However, accurate channel simulations are computationally expensive; therefore, it is preferable to configure the system using a limited number of simulation iterations. We develop a solver for the problem based on Bayesian optimization (BO), a black-box optimization method. The numerical results demonstrate that our proposed framework can achieve 18-22% higher throughput performance than conventional placement and power optimization strategies.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 4","pages":"217-221"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697138","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697138/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes an adaptive experimental design framework for a channel-simulation-based base station (BS) design that supports the joint optimization of transmission power and placement. We consider a system in which multiple transmitters provide wireless services over a shared frequency band. Our objective is to maximize the average throughput within an area of interest. System operators can design the system configurations prior to deployment by iterating them through channel simulations and updating the parameters. However, accurate channel simulations are computationally expensive; therefore, it is preferable to configure the system using a limited number of simulation iterations. We develop a solver for the problem based on Bayesian optimization (BO), a black-box optimization method. The numerical results demonstrate that our proposed framework can achieve 18-22% higher throughput performance than conventional placement and power optimization strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Networking Letters Vol. 6 Table of Contents IEEE Networking Letters Publication Information IEEE Networking Letters Society Information Editorial SI on Advances in AI for 6G Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1