Wireless MAC Protocol Synthesis and Optimization With Multi-Agent Distributed Reinforcement Learning

Navid Keshtiarast;Oliver Renaldi;Marina Petrova
{"title":"Wireless MAC Protocol Synthesis and Optimization With Multi-Agent Distributed Reinforcement Learning","authors":"Navid Keshtiarast;Oliver Renaldi;Marina Petrova","doi":"10.1109/LNET.2024.3503289","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) framework for MAC protocol design. Unlike centralized approaches, which rely on a single entity for decision-making, MADRL empowers individual network nodes to autonomously learn and optimize their MAC from local observations. Our framework is the first of a kind that enables distributed multi-agent learning within the ns-3 environment, and facilitates the design and synthesis of adaptive MAC protocols tailored to specific environmental conditions. We demonstrate the effectiveness of the MADRL framework through extensive simulations, showcasing superior performance compared to legacy protocols across diverse scenarios.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 4","pages":"242-246"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758702/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) framework for MAC protocol design. Unlike centralized approaches, which rely on a single entity for decision-making, MADRL empowers individual network nodes to autonomously learn and optimize their MAC from local observations. Our framework is the first of a kind that enables distributed multi-agent learning within the ns-3 environment, and facilitates the design and synthesis of adaptive MAC protocols tailored to specific environmental conditions. We demonstrate the effectiveness of the MADRL framework through extensive simulations, showcasing superior performance compared to legacy protocols across diverse scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在这封信中,我们为 MAC 协议设计提出了一种新颖的多代理深度强化学习(MADRL)框架。与依赖单一实体进行决策的集中式方法不同,MADRL 使单个网络节点能够根据本地观测结果自主学习和优化其 MAC。我们的框架是首个能在 ns-3 环境中实现分布式多代理学习的框架,有助于设计和合成适应特定环境条件的自适应 MAC 协议。我们通过大量仿真证明了 MADRL 框架的有效性,并在各种场景中展示了与传统协议相比更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Networking Letters Vol. 6 Table of Contents IEEE Networking Letters Publication Information IEEE Networking Letters Society Information Editorial SI on Advances in AI for 6G Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1