Amtul Bari Tabinda, Azka Maqsood, Javairia Ansar, Abdullah Yasar, Rimsha Javed, Mahnoor Nadeem
{"title":"Assessment and treatment of microplastics in different environmental compartments of Kallar Kahar Lake—a case study","authors":"Amtul Bari Tabinda, Azka Maqsood, Javairia Ansar, Abdullah Yasar, Rimsha Javed, Mahnoor Nadeem","doi":"10.1007/s10661-025-13713-3","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastic pollution has garnered global attention in recent decades due to its recognized ecological concerns through previous studies. However, in Pakistan, scarce information has been reported on MP pollution concerning the freshwater ecosystem. The current study was conducted on Kallar Kahar Lake, Punjab, Pakistan for (1) quantification, characterization, and distribution of MPs in surface water, sediments, and fish samples and (2) two treatment processes (magnetization and coagulation + flocculation) for the removal of MPs from the water. Samples were collected from each point by grab sampling method to investigate the MPs according to their type, shape, and color. The MP quantification and analysis were accomplished via the counting method by a stereomicroscope and Fourier transform infrared spectroscopy for their polymer type and composition. Results indicated the average MP abundance as 49.6 ± 11.14 MP/500 mL, 143 ± 48.18 MP/100 g, and 79 ± 12.2 items for water, sediments, and fish correspondingly. The dominant MP colors were blue, transparent, and green in all three environmental compartments. The ATR-FTIR identified the polymer types in lake water, sediment, and fish were PPS, PIB, and PLF; PET, PE, PP, and Natural Latex Rubber; and PET, respectively. The MP removal rate was observed high in both treatments. The average % removal rate of iron ore magnetization treatment was observed to be 80% at 1300 mg/L dosage of Fe<sub>2</sub>O<sub>3</sub>. Similarly in chemical coagulation processes, the highest MP removal efficiency was 85% (PET), 83% (PPS) and 80% (PIB) at the different concentration dosages of 150 + 15 mg/L, 111 + 15 mg/L, and 150 + 111 + 15 mg/L for Combination 1, Combination 2, and Combination 3, respectively. Overall, this study provided an integrative and novel approach for the removal of MP from surface water, which also holds an explicit commercial utilization prospect to overpower the MP pollution in water bodies. Also, the current findings serve as baseline data for the study of local freshwater systems.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13713-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic pollution has garnered global attention in recent decades due to its recognized ecological concerns through previous studies. However, in Pakistan, scarce information has been reported on MP pollution concerning the freshwater ecosystem. The current study was conducted on Kallar Kahar Lake, Punjab, Pakistan for (1) quantification, characterization, and distribution of MPs in surface water, sediments, and fish samples and (2) two treatment processes (magnetization and coagulation + flocculation) for the removal of MPs from the water. Samples were collected from each point by grab sampling method to investigate the MPs according to their type, shape, and color. The MP quantification and analysis were accomplished via the counting method by a stereomicroscope and Fourier transform infrared spectroscopy for their polymer type and composition. Results indicated the average MP abundance as 49.6 ± 11.14 MP/500 mL, 143 ± 48.18 MP/100 g, and 79 ± 12.2 items for water, sediments, and fish correspondingly. The dominant MP colors were blue, transparent, and green in all three environmental compartments. The ATR-FTIR identified the polymer types in lake water, sediment, and fish were PPS, PIB, and PLF; PET, PE, PP, and Natural Latex Rubber; and PET, respectively. The MP removal rate was observed high in both treatments. The average % removal rate of iron ore magnetization treatment was observed to be 80% at 1300 mg/L dosage of Fe2O3. Similarly in chemical coagulation processes, the highest MP removal efficiency was 85% (PET), 83% (PPS) and 80% (PIB) at the different concentration dosages of 150 + 15 mg/L, 111 + 15 mg/L, and 150 + 111 + 15 mg/L for Combination 1, Combination 2, and Combination 3, respectively. Overall, this study provided an integrative and novel approach for the removal of MP from surface water, which also holds an explicit commercial utilization prospect to overpower the MP pollution in water bodies. Also, the current findings serve as baseline data for the study of local freshwater systems.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.