Nicholas Strait, David Taylor, Rebecca Forney, Jacob Amos, Jessica Miller
{"title":"Otoliths, bones, teeth, and more: Development of a new polishing wheel for calcified structures","authors":"Nicholas Strait, David Taylor, Rebecca Forney, Jacob Amos, Jessica Miller","doi":"10.1002/lom3.10662","DOIUrl":null,"url":null,"abstract":"<p>Biochronological information stored in the calcified structures of organisms provide fundamental organismal, environmental, and ecological data. Bones, teeth, statoliths, corals, and otoliths are widely used to answer a myriad of questions related to trophic position, migration, age and growth, environmental variation, and historical climate. Many calcified structures, particularly the ear stones of fishes (otoliths), are small (50 <i>μ</i>m to 5 mm) and require precise preparation methods, which vary depending on the structure and research question but commonly include embedding, sectioning, and polishing prior to structural or chemical analysis. Globally, management agencies rely on the precise polishing of millions of otoliths each year to obtain vital demographic data, such as age and growth. However, this process is time consuming, labor intensive, and ergonomically strenuous. Since the early 1970s, there has been limited advancement in preparation methods with many still using manual approaches or costly, and at times inefficient, equipment. Therefore, we designed and fabricated an affordable, adjustable speed, multi-wheel polisher, which can be powered with alternating or direct current. Sample preparation time is reduced, and sample consistency is notably improved compared to manual approaches. While specifically designed for consistent and relatively rapid preparation of otolith thin sections, the polisher is readily adaptable to a variety of applications. Designs and manufacturing for these wheels are publicly available through the iLab at Oregon State University.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"23 2","pages":"131-137"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10662","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biochronological information stored in the calcified structures of organisms provide fundamental organismal, environmental, and ecological data. Bones, teeth, statoliths, corals, and otoliths are widely used to answer a myriad of questions related to trophic position, migration, age and growth, environmental variation, and historical climate. Many calcified structures, particularly the ear stones of fishes (otoliths), are small (50 μm to 5 mm) and require precise preparation methods, which vary depending on the structure and research question but commonly include embedding, sectioning, and polishing prior to structural or chemical analysis. Globally, management agencies rely on the precise polishing of millions of otoliths each year to obtain vital demographic data, such as age and growth. However, this process is time consuming, labor intensive, and ergonomically strenuous. Since the early 1970s, there has been limited advancement in preparation methods with many still using manual approaches or costly, and at times inefficient, equipment. Therefore, we designed and fabricated an affordable, adjustable speed, multi-wheel polisher, which can be powered with alternating or direct current. Sample preparation time is reduced, and sample consistency is notably improved compared to manual approaches. While specifically designed for consistent and relatively rapid preparation of otolith thin sections, the polisher is readily adaptable to a variety of applications. Designs and manufacturing for these wheels are publicly available through the iLab at Oregon State University.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.