Preclinical Evaluation of 68Ga-Labeled SL1 Aptamer for c-Met Targeted PET Imaging.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-02-10 DOI:10.1021/acs.molpharmaceut.4c01344
Xuwei Liu, Yamei Chen, Fengsheng Zhang, Fengshuang Qiu, Xiaoping Xu, Jianping Zhang, Simin He, Ding Ding, Weihong Tan, Shaoli Song
{"title":"Preclinical Evaluation of <sup>68</sup>Ga-Labeled SL1 Aptamer for c-Met Targeted PET Imaging.","authors":"Xuwei Liu, Yamei Chen, Fengsheng Zhang, Fengshuang Qiu, Xiaoping Xu, Jianping Zhang, Simin He, Ding Ding, Weihong Tan, Shaoli Song","doi":"10.1021/acs.molpharmaceut.4c01344","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosine protein kinase c-Met, encoded by the Met gene, is a membrane-associated receptor tyrosine kinase that is often aberrantly expressed in a wide range of tumors. The development of imaging probes specifically targeting c-Met is critical for improving cancer diagnostics. In this study, we successfully designed and fabricated an aptamer molecular imaging probe ([<sup>68</sup>Ga]Ga-NOTA-SL1) with high radiochemical purity (RCP), good stability <i>in vitro</i>, and high affinity for c-Met expressed tumors. As shown by the micro-PET/CT scanning, [<sup>68</sup>Ga]Ga-NOTA-SL1 efficiently imaged tumor models with varying c-Met expression. The quantitative analysis of micro-PET/CT showed tumor uptake of [<sup>68</sup>Ga]Ga-NOTA-SL1 in the HCC827 tumor models (30 min, 2.93 ± 0.64%ID/g; 60 min, 2.03 ± 0.67%ID/g; 90 min, 1.63 ± 0.61%ID/g), PC-9 tumor models (30 min, 2.1 ± 0.72%ID/g; 60 min, 1.7 ± 0.56%ID/g; 90 min, 1.33 ± 0.38%ID/g), and HCT116 tumor models (30 min, 1.4 ± 0.17%ID/g; 60 min, 1.23 ± 0.15%ID/g; 90 min, 0.97 ± 0.21%ID/g). The results of immunohistochemistry (IHC) further confirmed the targeting ability of [<sup>68</sup>Ga]Ga-NOTA-SL1 to c-Met from a molecular pathological perspective. The probe effectively imaged c-Met-positive tumors and demonstrated a favorable metabolism profile and targeting performance in non-small cell lung cancer (NSCLC) or colorectal cancer tumor models. Consequently, this probe shows promise as an imaging agent capable of providing valuable diagnostic insights into tumors with aberrant c-Met expression.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01344","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tyrosine protein kinase c-Met, encoded by the Met gene, is a membrane-associated receptor tyrosine kinase that is often aberrantly expressed in a wide range of tumors. The development of imaging probes specifically targeting c-Met is critical for improving cancer diagnostics. In this study, we successfully designed and fabricated an aptamer molecular imaging probe ([68Ga]Ga-NOTA-SL1) with high radiochemical purity (RCP), good stability in vitro, and high affinity for c-Met expressed tumors. As shown by the micro-PET/CT scanning, [68Ga]Ga-NOTA-SL1 efficiently imaged tumor models with varying c-Met expression. The quantitative analysis of micro-PET/CT showed tumor uptake of [68Ga]Ga-NOTA-SL1 in the HCC827 tumor models (30 min, 2.93 ± 0.64%ID/g; 60 min, 2.03 ± 0.67%ID/g; 90 min, 1.63 ± 0.61%ID/g), PC-9 tumor models (30 min, 2.1 ± 0.72%ID/g; 60 min, 1.7 ± 0.56%ID/g; 90 min, 1.33 ± 0.38%ID/g), and HCT116 tumor models (30 min, 1.4 ± 0.17%ID/g; 60 min, 1.23 ± 0.15%ID/g; 90 min, 0.97 ± 0.21%ID/g). The results of immunohistochemistry (IHC) further confirmed the targeting ability of [68Ga]Ga-NOTA-SL1 to c-Met from a molecular pathological perspective. The probe effectively imaged c-Met-positive tumors and demonstrated a favorable metabolism profile and targeting performance in non-small cell lung cancer (NSCLC) or colorectal cancer tumor models. Consequently, this probe shows promise as an imaging agent capable of providing valuable diagnostic insights into tumors with aberrant c-Met expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Development and Evaluation of 68Ga-Labeled TMTP1-Based Cyclic Peptide Probes for Targeting Hepatocellular Carcinoma. Monitoring Sorafenib Resistance and Efficacy in Hepatocellular Carcinoma Using [18F]Alfatide II and [18F]Fluorodeoxyglucose Positron Emission Tomography. Chitosan-Coated Silver Nanourchins for Imatinib Mesylate Delivery: Biophysical Characterization, In-Silico Profiling, and Anti-Colon Cancer Efficacy. Meta-Analysis of Permeability Literature Data Shows Possibilities and Limitations of Popular Methods. Mucin Mimics and Impacts the Function of Polymeric Inhibitors in Stabilizing Drug Supersaturation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1