Jiangyue Zhao, Tunga Salthammer, Alexandra Schieweck, Erik Uhde, Tareq Hussein
{"title":"Long-term prediction of climate change impacts on indoor particle pollution - case study of a residential building in Germany.","authors":"Jiangyue Zhao, Tunga Salthammer, Alexandra Schieweck, Erik Uhde, Tareq Hussein","doi":"10.1039/d4em00663a","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme weather phenomena are increasing in nature, which affects indoor air quality and especially particle concentrations in several ways: (1) changes in ambient pollutant concentrations, (2) indoor particle formation from gas-phase reactions, (3) building characteristics, (4) particle dynamic processes, and (5) residential behavior. However, there are only a few studies that have examined future indoor particle concentrations in relation to climate change, even though indoor spaces are intended to protect people from local climate influences and health risks posed by pollutants. Consequently, this work focuses on the expected long- and short-term concentrations of airborne particles in residences. For this purpose, we applied the computer-based Indoor Air Quality Climate Change (IAQCC) model to a residential building as part of a case study. The selected building physics data represent a large part of the German building structure. The long-term prediction is based on the shared socio-economic pathway (SSP) scenarios published by the Intergovernmental Panel on Climate Change (IPCC). When assuming that the activities of residents remain unchanged, our long-term simulations (by 2100) show that the decreasing outdoor particle concentration will compensate for the indoor chemistry driven particle increase, leading to an overall decreasing trend in the indoor particle concentration. Nevertheless, outdoor air pollution events, such as dust storms and ozone episodes, can significantly affect indoor air quality in the short term. It becomes clear that measures are needed to prevent and minimize the effects of outdoor pollutants under extreme weather conditions. This also includes the equipment of buildings with regard to appropriate construction design and smart technologies in order to ensure the protection of human health.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4em00663a","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme weather phenomena are increasing in nature, which affects indoor air quality and especially particle concentrations in several ways: (1) changes in ambient pollutant concentrations, (2) indoor particle formation from gas-phase reactions, (3) building characteristics, (4) particle dynamic processes, and (5) residential behavior. However, there are only a few studies that have examined future indoor particle concentrations in relation to climate change, even though indoor spaces are intended to protect people from local climate influences and health risks posed by pollutants. Consequently, this work focuses on the expected long- and short-term concentrations of airborne particles in residences. For this purpose, we applied the computer-based Indoor Air Quality Climate Change (IAQCC) model to a residential building as part of a case study. The selected building physics data represent a large part of the German building structure. The long-term prediction is based on the shared socio-economic pathway (SSP) scenarios published by the Intergovernmental Panel on Climate Change (IPCC). When assuming that the activities of residents remain unchanged, our long-term simulations (by 2100) show that the decreasing outdoor particle concentration will compensate for the indoor chemistry driven particle increase, leading to an overall decreasing trend in the indoor particle concentration. Nevertheless, outdoor air pollution events, such as dust storms and ozone episodes, can significantly affect indoor air quality in the short term. It becomes clear that measures are needed to prevent and minimize the effects of outdoor pollutants under extreme weather conditions. This also includes the equipment of buildings with regard to appropriate construction design and smart technologies in order to ensure the protection of human health.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.