The effect of C-terminal deamidation on bacterial susceptibility and resistance to modelin-5

IF 2.2 4区 生物学 Q3 BIOPHYSICS European Biophysics Journal Pub Date : 2025-02-11 DOI:10.1007/s00249-025-01732-4
Sarah R. Dennison, Leslie H. G. Morton, Kamal Badiani, Frederick Harris, David A. Phoenix
{"title":"The effect of C-terminal deamidation on bacterial susceptibility and resistance to modelin-5","authors":"Sarah R. Dennison,&nbsp;Leslie H. G. Morton,&nbsp;Kamal Badiani,&nbsp;Frederick Harris,&nbsp;David A. Phoenix","doi":"10.1007/s00249-025-01732-4","DOIUrl":null,"url":null,"abstract":"<div><p>The C-terminal amide carried by antimicrobial peptides (AMPs) can play a variable role in their antibacterial action and here, this role is investigated here for the synthetic peptide modelin-5 (M5-NH<sub>2</sub>). The peptide showed potent activity against <i>Pseudomonas aeruginosa</i> (MLC = 5.9 µM), with strong binding to the cytoplasmic membrane (CM) (K<sub>d</sub> = 21.5 μM) and the adoption of high levels of amphiphilic α-helical structure (80.1%) which promoted strong CM penetration (9.6 mN m<sup>−1</sup>) and CM lysis (89.0%). In contrast, <i>Staphylococcus aureus</i> was resistant to M5-NH<sub>2</sub> (MLC = 139.6 µM), probably due electrostatic repulsion effects mediated by Lys-PG in the organism’s CM. These effects promoted weak CM binding (K<sub>d</sub> = 120.6 μM) and the formation of low levels of amphiphilic α-helical structure (30.1%), with low levels of CM penetration (4.8 mN m<sup>−1</sup>) and lysis (36.4%). C-terminal deamidation had a variable influence on the antibacterial activity of M5-NH<sub>2</sub>, and in the case of <i>S. aureus</i>, loss of this structural moiety had no apparent effect on activity. The resistance of <i>S. aureus</i> to M5-NH<sub>2</sub> isoforms appeared to be facilitated by the high level of charge carried by these peptides, as well as the density and distribution of this charge. In the case of <i>P. aeruginosa,</i> the activity of M5-NH<sub>2</sub> was greatly reduced by C-terminal deamidation (MLC = 138.6 µM), primarily through decreased CM binding (K<sub>d</sub> = 118.4 μM) and amphiphilic α-helix formation (39.6%) that led to lower levels of CM penetration (5.1 mN m<sup>−1</sup>) and lysis (39.0%).</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"54 1-2","pages":"45 - 63"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-025-01732-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-025-01732-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The C-terminal amide carried by antimicrobial peptides (AMPs) can play a variable role in their antibacterial action and here, this role is investigated here for the synthetic peptide modelin-5 (M5-NH2). The peptide showed potent activity against Pseudomonas aeruginosa (MLC = 5.9 µM), with strong binding to the cytoplasmic membrane (CM) (Kd = 21.5 μM) and the adoption of high levels of amphiphilic α-helical structure (80.1%) which promoted strong CM penetration (9.6 mN m−1) and CM lysis (89.0%). In contrast, Staphylococcus aureus was resistant to M5-NH2 (MLC = 139.6 µM), probably due electrostatic repulsion effects mediated by Lys-PG in the organism’s CM. These effects promoted weak CM binding (Kd = 120.6 μM) and the formation of low levels of amphiphilic α-helical structure (30.1%), with low levels of CM penetration (4.8 mN m−1) and lysis (36.4%). C-terminal deamidation had a variable influence on the antibacterial activity of M5-NH2, and in the case of S. aureus, loss of this structural moiety had no apparent effect on activity. The resistance of S. aureus to M5-NH2 isoforms appeared to be facilitated by the high level of charge carried by these peptides, as well as the density and distribution of this charge. In the case of P. aeruginosa, the activity of M5-NH2 was greatly reduced by C-terminal deamidation (MLC = 138.6 µM), primarily through decreased CM binding (Kd = 118.4 μM) and amphiphilic α-helix formation (39.6%) that led to lower levels of CM penetration (5.1 mN m−1) and lysis (39.0%).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗菌肽(AMPs)所携带的 C 端酰胺在其抗菌作用中可发挥不同的作用,本文对合成肽 modelin-5 (M5-NH2) 的这种作用进行了研究。该肽对铜绿假单胞菌(MLC = 5.9 µM)具有很强的活性,能与细胞质膜(CM)紧密结合(Kd = 21.5 μM),并具有高水平的两亲性α-螺旋结构(80.1%),能促进CM的穿透(9.6 mN m-1)和CM的裂解(89.0%)。相比之下,金黄色葡萄球菌对 M5-NH2 具有抗药性(MLC = 139.6 µM),这可能是由于该生物体 CM 中的 Lys-PG 介导的静电排斥效应。这些效应促进了微弱的 CM 结合(Kd = 120.6 μM),并形成了低水平的两亲α-螺旋结构(30.1%),具有低水平的 CM 穿透性(4.8 mN m-1)和裂解性(36.4%)。C 端脱氨对 M5-NH2 的抗菌活性有不同程度的影响,而对金黄色葡萄球菌来说,失去这一结构分子对活性没有明显影响。金黄色葡萄球菌对 M5-NH2 异构体的抗性似乎是由于这些肽所携带的高水平电荷以及电荷的密度和分布。就铜绿假单胞菌而言,M5-NH2 的活性因 C 端脱氨而大大降低(MLC = 138.6 µM),这主要是由于 CM 结合力降低(Kd = 118.4 μM)和两亲性 α-螺旋形成(39.6%)导致 CM 穿透力(5.1 mN m-1)和裂解率(39.0%)降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
期刊最新文献
Correction: SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. Determination of the size parameters of α-synuclein amyloid precursor forms through DLS analysis. Exploring the biomechanical response of human semicircular canals by a visualized bionic model. A paradigm shift: analytical ultracentrifugation as a multi-attribute platform method in targeted protein degradation. The effect of C-terminal deamidation on bacterial susceptibility and resistance to modelin-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1