{"title":"The Role and Molecular Mechanism of Icaritin in the Treatment of Alzheimer's Disease.","authors":"Chong-Bo Zheng, Li-Zhen Wu, Wan-Ying Song, Liang Luo, Jia-Ting Cai, Zhi-Hua Huang, Ke-Qiang Tian","doi":"10.2174/0109298673354454250124074057","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), a degenerative disease of the central nervous system, affects approximately 70 million individuals worldwide. As the number of elderly in the population increases, the prevalence and incidence of AD are increasing annually. Although the drugs are currently used to alleviate certain cognitive symptoms, their overall therapeutic efficacy remains unclear. Consequently, there is significant societal demand for safe and effective therapeutic options. Icaritin (ICT), a bioactive compound derived from Epimedium brevicornu Maxim, has anti-apoptotic, antioxidant, anti-neuroinflammatory, anti-aging, and neuroprotective properties. In recent years, it has garnered significant interest because of its potential preventative and therapeutic effects in the context of AD. In this review, we analyze the therapeutic effects of ICT on AD, namely the inhibition of neuroinflammation, effects against oxidative stress and apoptosis, and promotion of cellular autophagy. The aim of this review was to provide a general reference for the research and development of new drugs, in particular ICT, for the prevention and treatment of AD.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673354454250124074057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD), a degenerative disease of the central nervous system, affects approximately 70 million individuals worldwide. As the number of elderly in the population increases, the prevalence and incidence of AD are increasing annually. Although the drugs are currently used to alleviate certain cognitive symptoms, their overall therapeutic efficacy remains unclear. Consequently, there is significant societal demand for safe and effective therapeutic options. Icaritin (ICT), a bioactive compound derived from Epimedium brevicornu Maxim, has anti-apoptotic, antioxidant, anti-neuroinflammatory, anti-aging, and neuroprotective properties. In recent years, it has garnered significant interest because of its potential preventative and therapeutic effects in the context of AD. In this review, we analyze the therapeutic effects of ICT on AD, namely the inhibition of neuroinflammation, effects against oxidative stress and apoptosis, and promotion of cellular autophagy. The aim of this review was to provide a general reference for the research and development of new drugs, in particular ICT, for the prevention and treatment of AD.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.