Predicting substrates for orphan solute carrier proteins using multi-omics datasets.

IF 3.7 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-02-11 DOI:10.1186/s12864-025-11330-5
Y Zhang, S Newstead, P Sarkies
{"title":"Predicting substrates for orphan solute carrier proteins using multi-omics datasets.","authors":"Y Zhang, S Newstead, P Sarkies","doi":"10.1186/s12864-025-11330-5","DOIUrl":null,"url":null,"abstract":"<p><p>Solute carriers (SLC) are integral membrane proteins responsible for transporting a wide variety of metabolites, signaling molecules and drugs across cellular membranes. Despite key roles in metabolism, signaling and pharmacology, around one third of SLC proteins are 'orphans' whose substrates are unknown. Experimental determination of SLC substrates is technically challenging, given the wide range of possible physiological candidates. Here, we develop a predictive algorithm to identify correlations between SLC expression levels and intracellular metabolite concentrations by leveraging existing cancer multi-omics datasets. Our predictions recovered known SLC-substrate pairs with high sensitivity and specificity compared to simulated random pairs. CRISPR-Cas9 dependency screen data and metabolic pathway adjacency data further improved the performance of our algorithm. In parallel, we combined drug sensitivity data with SLC expression profiles to predict new SLC-drug interactions. Together, we provide a novel bioinformatic pipeline to predict new substrate predictions for SLCs, offering new opportunities to de-orphanise SLCs with important implications for understanding their roles in health and disease.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"130"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11330-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Solute carriers (SLC) are integral membrane proteins responsible for transporting a wide variety of metabolites, signaling molecules and drugs across cellular membranes. Despite key roles in metabolism, signaling and pharmacology, around one third of SLC proteins are 'orphans' whose substrates are unknown. Experimental determination of SLC substrates is technically challenging, given the wide range of possible physiological candidates. Here, we develop a predictive algorithm to identify correlations between SLC expression levels and intracellular metabolite concentrations by leveraging existing cancer multi-omics datasets. Our predictions recovered known SLC-substrate pairs with high sensitivity and specificity compared to simulated random pairs. CRISPR-Cas9 dependency screen data and metabolic pathway adjacency data further improved the performance of our algorithm. In parallel, we combined drug sensitivity data with SLC expression profiles to predict new SLC-drug interactions. Together, we provide a novel bioinformatic pipeline to predict new substrate predictions for SLCs, offering new opportunities to de-orphanise SLCs with important implications for understanding their roles in health and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多组学数据集预测孤儿溶质载体蛋白的底物。
溶质载体(SLC)是一种完整的膜蛋白,负责在细胞膜上运输各种代谢物、信号分子和药物。尽管在代谢、信号传导和药理学中起着关键作用,但大约三分之一的SLC蛋白是“孤儿”,其底物未知。考虑到多种可能的生理候选物,SLC底物的实验测定在技术上具有挑战性。在这里,我们开发了一种预测算法,利用现有的癌症多组学数据集来确定SLC表达水平与细胞内代谢物浓度之间的相关性。与模拟随机对相比,我们的预测恢复了已知的slc底物对,具有高灵敏度和特异性。CRISPR-Cas9依赖性筛选数据和代谢途径邻接数据进一步提高了我们算法的性能。同时,我们结合药物敏感性数据和SLC表达谱来预测新的SLC-药物相互作用。总之,我们提供了一个新的生物信息学管道来预测SLCs的新底物预测,为SLCs的去孤立化提供了新的机会,这对理解SLCs在健康和疾病中的作用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Variation in guide RNA library representation results in gene effect score bias in genome-wide CRISPR screens. Whole genome sequencing to inform the epidemiology of Plasmodium falciparum malaria in the elimination setting of Malaysia. Maternal genetic structure and population affinities of the Sichuan Han Chinese based on whole mitochondrial genomes. Escape from X inactivation varies across genes and tissues and shapes sex-biased sex chromosome gene expression. Multimodal learning reveals plants' hidden sensory integration logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1