Lie Ma, XuQing Liu, R Roopashree, Syeda Wajida Kazmi, Saade Abdalkareem Jasim, K Phaninder Vinay, Ata Fateh, Fang Yang, Mansour Rajabivahid, Mahmoud Dehghani-Ghorbi, Reza Akhavan
{"title":"Long non-coding RNAs (lncRNAs) in cancer development: new insight from STAT3 signaling pathway to immune evasion.","authors":"Lie Ma, XuQing Liu, R Roopashree, Syeda Wajida Kazmi, Saade Abdalkareem Jasim, K Phaninder Vinay, Ata Fateh, Fang Yang, Mansour Rajabivahid, Mahmoud Dehghani-Ghorbi, Reza Akhavan","doi":"10.1007/s10238-024-01532-8","DOIUrl":null,"url":null,"abstract":"<p><p>Overcoming cancer and enhancing patient survival are becoming increasingly challenging due to the uncontrolled growth and metastasis of colorectal cancer cells. In order to provide effective cancer treatment and minimize the malignancy of cancer cells, it is necessary to understand how complex signaling networks contribute to their invasion and proliferation. The signal transducer and activator of transcription 3 (STAT3) is a promising target due to its involvement in various cellular functions, including apoptosis, immunosuppression, cell invasion, migration, and proliferation. Dysregulation of STAT3 signaling is associated with diseases, particularly colorectal cancer. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs, are essential for the progression, apoptosis, and metastasis of CRC as they regulate key signaling pathways such as STAT3 signaling and contribute to gene regulation at the epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs have a key function in regulating immune cells function through STAT3. In this study, we comprehensively reviewed the regulatory roles of different lncRNAs on STAT3 and the mutual effects of this pathway in various aspects of carcinogenesis, including proliferation, apoptosis, metastasis, drug resistance, and angiogenesis. Moreover, we investigate the effects of lncRNA/STAT3 axis on the function of different immune cells that play critical role in the tumor microenvironment.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"25 1","pages":"53"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-024-01532-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Overcoming cancer and enhancing patient survival are becoming increasingly challenging due to the uncontrolled growth and metastasis of colorectal cancer cells. In order to provide effective cancer treatment and minimize the malignancy of cancer cells, it is necessary to understand how complex signaling networks contribute to their invasion and proliferation. The signal transducer and activator of transcription 3 (STAT3) is a promising target due to its involvement in various cellular functions, including apoptosis, immunosuppression, cell invasion, migration, and proliferation. Dysregulation of STAT3 signaling is associated with diseases, particularly colorectal cancer. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs, are essential for the progression, apoptosis, and metastasis of CRC as they regulate key signaling pathways such as STAT3 signaling and contribute to gene regulation at the epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs have a key function in regulating immune cells function through STAT3. In this study, we comprehensively reviewed the regulatory roles of different lncRNAs on STAT3 and the mutual effects of this pathway in various aspects of carcinogenesis, including proliferation, apoptosis, metastasis, drug resistance, and angiogenesis. Moreover, we investigate the effects of lncRNA/STAT3 axis on the function of different immune cells that play critical role in the tumor microenvironment.
期刊介绍:
Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.