A deep learning-based system for automatic detection of emesis with high accuracy in Suncus murinus.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-02-10 DOI:10.1038/s42003-025-07479-0
Zengbing Lu, Yimeng Qiao, Xiaofei Huang, Dexuan Cui, Julia Y H Liu, Man Piu Ngan, Luping Liu, Zhixin Huang, Zi-Tong Li, Lingqing Yang, Aleena Khalid, Yingyi Deng, Sze Wa Chan, Longlong Tu, John A Rudd
{"title":"A deep learning-based system for automatic detection of emesis with high accuracy in Suncus murinus.","authors":"Zengbing Lu, Yimeng Qiao, Xiaofei Huang, Dexuan Cui, Julia Y H Liu, Man Piu Ngan, Luping Liu, Zhixin Huang, Zi-Tong Li, Lingqing Yang, Aleena Khalid, Yingyi Deng, Sze Wa Chan, Longlong Tu, John A Rudd","doi":"10.1038/s42003-025-07479-0","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying emesis in Suncus murinus (S. murinus) has traditionally relied on direct observation or reviewing recorded behaviour, which are laborious, time-consuming processes that are susceptible to operator error. With rapid advancements in deep learning, automated animal behaviour quantification tools with high accuracy have emerged. In this study, we pioneere the use of both three-dimensional convolutional neural networks and self-attention mechanisms to develop the Automatic Emesis Detection (AED) tool for the quantification of emesis in S. murinus, achieving an overall accuracy of 98.92%. Specifically, we use motion-induced emesis videos as training datasets, with validation results demonstrating an accuracy of 99.42% for motion-induced emesis. In our model generalisation and application studies, we assess the AED tool using various emetics, including resiniferatoxin, nicotine, copper sulphate, naloxone, U46619, cyclophosphamide, exendin-4, and cisplatin. The prediction accuracies for these emetics are 97.10%, 100%, 100%, 97.10%, 98.97%, 96.93%, 98.91%, and 98.41%, respectively. In conclusion, employing deep learning-based automatic analysis improves efficiency and accuracy and mitigates human bias and errors. Our study provides valuable insights into the development of deep learning neural network models aimed at automating the analysis of various behaviours in S. murinus, with potential applications in preclinical research and drug development.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"209"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07479-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying emesis in Suncus murinus (S. murinus) has traditionally relied on direct observation or reviewing recorded behaviour, which are laborious, time-consuming processes that are susceptible to operator error. With rapid advancements in deep learning, automated animal behaviour quantification tools with high accuracy have emerged. In this study, we pioneere the use of both three-dimensional convolutional neural networks and self-attention mechanisms to develop the Automatic Emesis Detection (AED) tool for the quantification of emesis in S. murinus, achieving an overall accuracy of 98.92%. Specifically, we use motion-induced emesis videos as training datasets, with validation results demonstrating an accuracy of 99.42% for motion-induced emesis. In our model generalisation and application studies, we assess the AED tool using various emetics, including resiniferatoxin, nicotine, copper sulphate, naloxone, U46619, cyclophosphamide, exendin-4, and cisplatin. The prediction accuracies for these emetics are 97.10%, 100%, 100%, 97.10%, 98.97%, 96.93%, 98.91%, and 98.41%, respectively. In conclusion, employing deep learning-based automatic analysis improves efficiency and accuracy and mitigates human bias and errors. Our study provides valuable insights into the development of deep learning neural network models aimed at automating the analysis of various behaviours in S. murinus, with potential applications in preclinical research and drug development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Ecological change and conflict reduction led to a social circulatory system in ants. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. High hydrostatic pressure stimulates n-C16 mineralization to CO2 by deep-ocean bacterium Alcanivorax xenomutans A28. RNA-protein interaction prediction using network-guided deep learning. The transcriptomic landscape of monosomy X (45,X) during early human fetal and placental development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1