Exploring DNA degradation in situ and in museum storage through genomics and metagenomics.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-02-10 DOI:10.1038/s42003-025-07616-9
Anne Marie Høier Eriksen, Juan Antonio Rodríguez, Frederik Seersholm, Hege Ingjerd Hollund, Anne Birgitte Gotfredsen, Matthew James Collins, Bjarne Grønnow, Mikkel Winther Pedersen, M Thomas P Gilbert, Henning Matthiesen
{"title":"Exploring DNA degradation in situ and in museum storage through genomics and metagenomics.","authors":"Anne Marie Høier Eriksen, Juan Antonio Rodríguez, Frederik Seersholm, Hege Ingjerd Hollund, Anne Birgitte Gotfredsen, Matthew James Collins, Bjarne Grønnow, Mikkel Winther Pedersen, M Thomas P Gilbert, Henning Matthiesen","doi":"10.1038/s42003-025-07616-9","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the environmental and microbial processes involved in DNA degradation from archaeological remains is a fundamental part of managing bone specimens. We investigated the state of DNA preservation in 33 archaeozoological caribou (Rangifer tarandus) ribs excavated from the same excavation trench at a former Inuit hunting camp in West Greenland, separated by 43 years: 1978 and 2021. Our findings show that DNA is better preserved in the most recently excavated samples, indicating a detrimental effect of museum storage on DNA integrity. Additionally, our data reveals a diverse microbiome in these bones, encoding genes relevant for bone degradation, such as enzymatic families relating to collagenases, peptidases and glycosidases. Microbes associated with bone degradation were present in both new and historical samples, with museum-stored bones showing significantly more DNA damage. Overall, our research sheds light on the nuanced dynamics governing the preservation of genomic material in archaeological contexts, underscoring the vital importance of careful considerations in museum curation practices for the sustainable conservation of invaluable skeletal records in museum repositories and in situ.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"210"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07616-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the environmental and microbial processes involved in DNA degradation from archaeological remains is a fundamental part of managing bone specimens. We investigated the state of DNA preservation in 33 archaeozoological caribou (Rangifer tarandus) ribs excavated from the same excavation trench at a former Inuit hunting camp in West Greenland, separated by 43 years: 1978 and 2021. Our findings show that DNA is better preserved in the most recently excavated samples, indicating a detrimental effect of museum storage on DNA integrity. Additionally, our data reveals a diverse microbiome in these bones, encoding genes relevant for bone degradation, such as enzymatic families relating to collagenases, peptidases and glycosidases. Microbes associated with bone degradation were present in both new and historical samples, with museum-stored bones showing significantly more DNA damage. Overall, our research sheds light on the nuanced dynamics governing the preservation of genomic material in archaeological contexts, underscoring the vital importance of careful considerations in museum curation practices for the sustainable conservation of invaluable skeletal records in museum repositories and in situ.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Ecological change and conflict reduction led to a social circulatory system in ants. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. High hydrostatic pressure stimulates n-C16 mineralization to CO2 by deep-ocean bacterium Alcanivorax xenomutans A28. RNA-protein interaction prediction using network-guided deep learning. The transcriptomic landscape of monosomy X (45,X) during early human fetal and placental development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1