Peng-Xiang Hua, Zhen Huang, Zhe-Yuan Xu, Qiang Zhao, Chen-Yang Ye, Yi-Feng Wang, Yun-He Xu, Yao Fu, Hu Ding
{"title":"An active representation learning method for reaction yield prediction with small-scale data.","authors":"Peng-Xiang Hua, Zhen Huang, Zhe-Yuan Xu, Qiang Zhao, Chen-Yang Ye, Yi-Feng Wang, Yun-He Xu, Yao Fu, Hu Ding","doi":"10.1038/s42004-025-01434-0","DOIUrl":null,"url":null,"abstract":"<p><p>Reaction optimization plays an essential role in chemical research and industrial production. To explore a large reaction system, a practical issue is how to reduce the heavy experimental load for finding the high-yield conditions. In this paper, we present an efficient machine learning tool called \"RS-Coreset\", where the key idea is to take advantage of deep representation learning techniques to guide an interactive procedure for representing the full reaction space. Our proposed tool only uses small-scale data, say 2.5% to 5% of the instances, to predict the yields of the reaction space. We validate the performance on three public datasets and achieve state-of-the-art results. Moreover, we apply this tool to assist the realistic exploration of the Lewis base-boryl radicals enabled dechlorinative coupling reactions in our lab. The tool can help us to effectively predict the yields and even discover several feasible reaction combinations that were overlooked in previous articles.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"42"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811124/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01434-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reaction optimization plays an essential role in chemical research and industrial production. To explore a large reaction system, a practical issue is how to reduce the heavy experimental load for finding the high-yield conditions. In this paper, we present an efficient machine learning tool called "RS-Coreset", where the key idea is to take advantage of deep representation learning techniques to guide an interactive procedure for representing the full reaction space. Our proposed tool only uses small-scale data, say 2.5% to 5% of the instances, to predict the yields of the reaction space. We validate the performance on three public datasets and achieve state-of-the-art results. Moreover, we apply this tool to assist the realistic exploration of the Lewis base-boryl radicals enabled dechlorinative coupling reactions in our lab. The tool can help us to effectively predict the yields and even discover several feasible reaction combinations that were overlooked in previous articles.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.