Enhancing NK Cell Antitumor Activity With Natural Compounds: Research Advances and Molecular Mechanisms.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL Phytotherapy Research Pub Date : 2025-02-11 DOI:10.1002/ptr.8456
Yu Wu, Mingxiao Yin, Wenjiao Xia, Baokai Dou, Xiaoyu Liu, Ru Sun
{"title":"Enhancing NK Cell Antitumor Activity With Natural Compounds: Research Advances and Molecular Mechanisms.","authors":"Yu Wu, Mingxiao Yin, Wenjiao Xia, Baokai Dou, Xiaoyu Liu, Ru Sun","doi":"10.1002/ptr.8456","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, immunotherapy has become a novel antitumor strategy in addition to traditional surgery, radiotherapy, and chemotherapy and has exhibited promising results in clinical applications. Despite significant breakthroughs in immunotherapy, such as immune checkpoint blockade and CAR-T cell therapy, it remains necessary to develop more efficacious, safer, and cheaper immunotherapeutic drugs due to factors including small reaction populations, acquired resistance, adverse side effects, and high costs. Natural killer (NK) cells are preeminent cytotoxic lymphocytes of the innate immune system that act as the first line of defense against tumors and synergistically enhance the adaptive immune response of T lymphocytes. Therefore, boosting the antitumor function of NK cells is an important direction in the development of immunotherapy. For decades, various immunotherapies such as adoptive cell therapy, antibody drugs, cytokines supplement, and chemical immunomodulators have been developing rapidly to improve the function of NK cells. Compared to biological immunotherapy, immunomodulators derived from natural products have outstanding advantages of low immunogenicity, multi-targeting, and cost-effectiveness. Currently, increasing attention is being focused on discovering NK cell-stimulating agents from natural products, such as polysaccharides, alkaloids, terpenoids, saponins, phenolics, and quinones. This review aims to categorize and summarize the comprehensive research progress on these natural products, discuss their potential molecular mechanisms in regulating NK cells, and explore their clinical applications as standalone treatments or in combination with conventional chemotherapy regimens.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8456","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, immunotherapy has become a novel antitumor strategy in addition to traditional surgery, radiotherapy, and chemotherapy and has exhibited promising results in clinical applications. Despite significant breakthroughs in immunotherapy, such as immune checkpoint blockade and CAR-T cell therapy, it remains necessary to develop more efficacious, safer, and cheaper immunotherapeutic drugs due to factors including small reaction populations, acquired resistance, adverse side effects, and high costs. Natural killer (NK) cells are preeminent cytotoxic lymphocytes of the innate immune system that act as the first line of defense against tumors and synergistically enhance the adaptive immune response of T lymphocytes. Therefore, boosting the antitumor function of NK cells is an important direction in the development of immunotherapy. For decades, various immunotherapies such as adoptive cell therapy, antibody drugs, cytokines supplement, and chemical immunomodulators have been developing rapidly to improve the function of NK cells. Compared to biological immunotherapy, immunomodulators derived from natural products have outstanding advantages of low immunogenicity, multi-targeting, and cost-effectiveness. Currently, increasing attention is being focused on discovering NK cell-stimulating agents from natural products, such as polysaccharides, alkaloids, terpenoids, saponins, phenolics, and quinones. This review aims to categorize and summarize the comprehensive research progress on these natural products, discuss their potential molecular mechanisms in regulating NK cells, and explore their clinical applications as standalone treatments or in combination with conventional chemotherapy regimens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
期刊最新文献
Gastrodin Ameliorates Tau Pathology and BBB Dysfunction in 3xTg-AD Transgenic Mice by Regulating the ADRA1/NF-κB/NLRP3 Pathway to Reduce Neuroinflammation. Multifaceted Therapeutic Impacts of Cucurbitacin B: Recent Evidences From Preclinical Studies. Aurantio-Obtusin Regulates Gut Microbiota and Serum Metabolism to Alleviate High-Fat Diet-Induced Obesity-Associated Non-Alcoholic Fatty Liver Disease in Mice. Toosendanin Induces Cell Cycle Arrest and Apoptosis to Suppress Diffuse Large B-Cell Lymphoma Growth by Inhibiting PI3Kα/β and PLK1 Signaling. RETRACTION: Epigallocatechin-3-Gallate Enhances Differentiation of Acute Promyelocytic Leukemia Cells via Inhibition of PML-RARα and HDAC1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1