Jacob Antunes , Tony Young , Dane Pittock , Paul Jacobs , Aaron Nelson , Jon Piper , Shrikant Deshpande
{"title":"Assessing multiple MRI sequences in deep learning-based synthetic CT generation for MR-only radiation therapy of head and neck cancers","authors":"Jacob Antunes , Tony Young , Dane Pittock , Paul Jacobs , Aaron Nelson , Jon Piper , Shrikant Deshpande","doi":"10.1016/j.radonc.2025.110782","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study investigated the effect of multiple magnetic resonance (MR) sequences on the quality of deep-learning-based synthetic computed tomography (sCT) generation in the head and neck region.</div></div><div><h3>Materials and methods</h3><div>12 MR series (T1pre-, T1post-contrast, T2 each with 4 Dixon images) were collected from 26 patients with head and neck cancers. 14 unique deep-learning models using the U-Net framework were trained using multiple MRs as inputs to generate sCTs. Mean absolute error (MAE), Dice Similarity Coefficient (DSC), as well as Gamma pass rates were used to compare sCTs to the actual CT across the different multi-channel MR-sCT models.</div></div><div><h3>Results</h3><div>Using all available MR series yielded sCTs with the lowest pixel-wise error (MAE = 80.5 ± 9.9 HU), but increasing channels also increased artificial tissue which led to poorer auto-contouring and lower dosimetric accuracy. Models with T2 protocols generally resulted in poorer quality sCTs. Pre-contrast T1 with all Dixon images was the best multi-channel MR-sCT model, consistently ranking high for all sCT quality measurements (average DSC across all structures = 80.0 % ± 13.6 %, global Gamma Pass Rate = 97.9 % ± 1.7 % at 2 %/2mm dose criterion and 20 % of max dose threshold).</div></div><div><h3>Conclusions</h3><div>Deep-learning networks using all Dixon images from a pre-contrast T1 sequence as multi-channel inputs produced the most clinically viable sCTs. Our proposed method may enable MR-only radiotherapy planning in a clinical setting for head and neck cancers.</div></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":"205 ","pages":"Article 110782"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814025000775","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study investigated the effect of multiple magnetic resonance (MR) sequences on the quality of deep-learning-based synthetic computed tomography (sCT) generation in the head and neck region.
Materials and methods
12 MR series (T1pre-, T1post-contrast, T2 each with 4 Dixon images) were collected from 26 patients with head and neck cancers. 14 unique deep-learning models using the U-Net framework were trained using multiple MRs as inputs to generate sCTs. Mean absolute error (MAE), Dice Similarity Coefficient (DSC), as well as Gamma pass rates were used to compare sCTs to the actual CT across the different multi-channel MR-sCT models.
Results
Using all available MR series yielded sCTs with the lowest pixel-wise error (MAE = 80.5 ± 9.9 HU), but increasing channels also increased artificial tissue which led to poorer auto-contouring and lower dosimetric accuracy. Models with T2 protocols generally resulted in poorer quality sCTs. Pre-contrast T1 with all Dixon images was the best multi-channel MR-sCT model, consistently ranking high for all sCT quality measurements (average DSC across all structures = 80.0 % ± 13.6 %, global Gamma Pass Rate = 97.9 % ± 1.7 % at 2 %/2mm dose criterion and 20 % of max dose threshold).
Conclusions
Deep-learning networks using all Dixon images from a pre-contrast T1 sequence as multi-channel inputs produced the most clinically viable sCTs. Our proposed method may enable MR-only radiotherapy planning in a clinical setting for head and neck cancers.
期刊介绍:
Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.