Assessing multiple MRI sequences in deep learning-based synthetic CT generation for MR-only radiation therapy of head and neck cancers

IF 4.9 1区 医学 Q1 ONCOLOGY Radiotherapy and Oncology Pub Date : 2025-02-08 DOI:10.1016/j.radonc.2025.110782
Jacob Antunes , Tony Young , Dane Pittock , Paul Jacobs , Aaron Nelson , Jon Piper , Shrikant Deshpande
{"title":"Assessing multiple MRI sequences in deep learning-based synthetic CT generation for MR-only radiation therapy of head and neck cancers","authors":"Jacob Antunes ,&nbsp;Tony Young ,&nbsp;Dane Pittock ,&nbsp;Paul Jacobs ,&nbsp;Aaron Nelson ,&nbsp;Jon Piper ,&nbsp;Shrikant Deshpande","doi":"10.1016/j.radonc.2025.110782","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study investigated the effect of multiple magnetic resonance (MR) sequences on the quality of deep-learning-based synthetic computed tomography (sCT) generation in the head and neck region.</div></div><div><h3>Materials and methods</h3><div>12 MR series (T1pre-, T1post-contrast, T2 each with 4 Dixon images) were collected from 26 patients with head and neck cancers. 14 unique deep-learning models using the U-Net framework were trained using multiple MRs as inputs to generate sCTs. Mean absolute error (MAE), Dice Similarity Coefficient (DSC), as well as Gamma pass rates were used to compare sCTs to the actual CT across the different multi-channel MR-sCT models.</div></div><div><h3>Results</h3><div>Using all available MR series yielded sCTs with the lowest pixel-wise error (MAE = 80.5 ± 9.9 HU), but increasing channels also increased artificial tissue which led to poorer auto-contouring and lower dosimetric accuracy. Models with T2 protocols generally resulted in poorer quality sCTs. Pre-contrast T1 with all Dixon images was the best multi-channel MR-sCT model, consistently ranking high for all sCT quality measurements (average DSC across all structures = 80.0 % ± 13.6 %, global Gamma Pass Rate = 97.9 % ± 1.7 % at 2 %/2mm dose criterion and 20 % of max dose threshold).</div></div><div><h3>Conclusions</h3><div>Deep-learning networks using all Dixon images from a pre-contrast T1 sequence as multi-channel inputs produced the most clinically viable sCTs. Our proposed method may enable MR-only radiotherapy planning in a clinical setting for head and neck cancers.</div></div>","PeriodicalId":21041,"journal":{"name":"Radiotherapy and Oncology","volume":"205 ","pages":"Article 110782"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiotherapy and Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167814025000775","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study investigated the effect of multiple magnetic resonance (MR) sequences on the quality of deep-learning-based synthetic computed tomography (sCT) generation in the head and neck region.

Materials and methods

12 MR series (T1pre-, T1post-contrast, T2 each with 4 Dixon images) were collected from 26 patients with head and neck cancers. 14 unique deep-learning models using the U-Net framework were trained using multiple MRs as inputs to generate sCTs. Mean absolute error (MAE), Dice Similarity Coefficient (DSC), as well as Gamma pass rates were used to compare sCTs to the actual CT across the different multi-channel MR-sCT models.

Results

Using all available MR series yielded sCTs with the lowest pixel-wise error (MAE = 80.5 ± 9.9 HU), but increasing channels also increased artificial tissue which led to poorer auto-contouring and lower dosimetric accuracy. Models with T2 protocols generally resulted in poorer quality sCTs. Pre-contrast T1 with all Dixon images was the best multi-channel MR-sCT model, consistently ranking high for all sCT quality measurements (average DSC across all structures = 80.0 % ± 13.6 %, global Gamma Pass Rate = 97.9 % ± 1.7 % at 2 %/2mm dose criterion and 20 % of max dose threshold).

Conclusions

Deep-learning networks using all Dixon images from a pre-contrast T1 sequence as multi-channel inputs produced the most clinically viable sCTs. Our proposed method may enable MR-only radiotherapy planning in a clinical setting for head and neck cancers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiotherapy and Oncology
Radiotherapy and Oncology 医学-核医学
CiteScore
10.30
自引率
10.50%
发文量
2445
审稿时长
45 days
期刊介绍: Radiotherapy and Oncology publishes papers describing original research as well as review articles. It covers areas of interest relating to radiation oncology. This includes: clinical radiotherapy, combined modality treatment, translational studies, epidemiological outcomes, imaging, dosimetry, and radiation therapy planning, experimental work in radiobiology, chemobiology, hyperthermia and tumour biology, as well as data science in radiation oncology and physics aspects relevant to oncology.Papers on more general aspects of interest to the radiation oncologist including chemotherapy, surgery and immunology are also published.
期刊最新文献
PACE-B: Where does this position SBRT as an option for localized prostate cancer? Elective clinical target volume in early squamous cell anal canal cancer: A systematic review and meta-analysis of the risk of recurrence in untreated upper pelvic and external iliac lymph nodes. The fractionation effect on proton RBE in a late normal tissue damage model in vivo Impact of bra application in breast cancer radiotherapy: A pilot prospective randomized trial Pioneering BNCT: Refining strategies for complex cutaneous malignancies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1