Treg Upregulation by Treadmill Training Accelerates Myelin Repair Post-Ischemia.

Juan Zhong, Tao Liu, Yingxi He, Ying Zhu, Sen Li, Yuan Liu, Ce Yang, Lehua Yu, Lu Pan, Ying Yin, Botao Tan
{"title":"Treg Upregulation by Treadmill Training Accelerates Myelin Repair Post-Ischemia.","authors":"Juan Zhong, Tao Liu, Yingxi He, Ying Zhu, Sen Li, Yuan Liu, Ce Yang, Lehua Yu, Lu Pan, Ying Yin, Botao Tan","doi":"10.1007/s11481-025-10178-6","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory T (Treg) cells contribute to white matter repair following ischemic stroke, but their limited availability in circulation restricts their therapeutic potential. Exercise, as a non-invasive and effective rehabilitation method, has been shown to restore Treg balance in diseases. This study explores the effects of treadmill training on Treg upregulation and its influence on myelin repair and functional recovery in rats with middle cerebral artery occlusion (MCAO). After four weeks of treadmill training, we analyzed the proportion of Treg cells (Tregs), FOXP3 expression, and oligodendrocyte-related protein levels using flow cytometry, immunofluorescence, and Western blotting. Myelin structure was examined with transmission electron microscopy (TEM), while motor coordination and balance were assessed using the fatigue rotarod and CatWalk analysis systems. To further explore the role of Tregs, the FOXP3 inhibitor P60 was used to inhibit Treg activity. The findings of our study indicate that training on a treadmill supports the maturation of oligodendrocytes, leads to an increase in myelin-associated proteins and the thickness of myelin, and promotes the recovery of motor function. Inhibition of Treg activity diminished these benefits, highlighting Tregs' key role in exercise-induced remyelination. These findings suggest that treadmill training facilitates myelin regeneration and functional recovery by upregulating Tregs, offering potential new strategies for stroke treatment.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"17"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10178-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory T (Treg) cells contribute to white matter repair following ischemic stroke, but their limited availability in circulation restricts their therapeutic potential. Exercise, as a non-invasive and effective rehabilitation method, has been shown to restore Treg balance in diseases. This study explores the effects of treadmill training on Treg upregulation and its influence on myelin repair and functional recovery in rats with middle cerebral artery occlusion (MCAO). After four weeks of treadmill training, we analyzed the proportion of Treg cells (Tregs), FOXP3 expression, and oligodendrocyte-related protein levels using flow cytometry, immunofluorescence, and Western blotting. Myelin structure was examined with transmission electron microscopy (TEM), while motor coordination and balance were assessed using the fatigue rotarod and CatWalk analysis systems. To further explore the role of Tregs, the FOXP3 inhibitor P60 was used to inhibit Treg activity. The findings of our study indicate that training on a treadmill supports the maturation of oligodendrocytes, leads to an increase in myelin-associated proteins and the thickness of myelin, and promotes the recovery of motor function. Inhibition of Treg activity diminished these benefits, highlighting Tregs' key role in exercise-induced remyelination. These findings suggest that treadmill training facilitates myelin regeneration and functional recovery by upregulating Tregs, offering potential new strategies for stroke treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
期刊最新文献
Vinpocetine and Lactobacillus Attenuated Rotenone-Induced Parkinson's Disease and Restored Dopamine Synthesis in Rats through Modulation of Oxidative Stress, Neuroinflammation, and Lewy Bodies Inclusion. Pharmacological Depletion of Microglia Protects Against Alcohol-Induced Corticolimbic Neurodegeneration During Intoxication in Male Rats. Loganic Acid Alleviates the Olfactory-Brain NLRP3 Inflammasome Activation and Rescues Dopaminergic Neurons in Experimental Models of Parkinson's Disease. GDF11 Mitigates Neuropathic Pain via Regulation of Microglial Polarization and Neuroinflammation through TGF-βR1/SMAD2/NF-κB Pathway in Male Mice. Reduction of Neuroinflammation as a Common Mechanism of Action of Anorexigenic and Orexigenic Peptide Analogues in the Triple Transgenic Mouse Model of Alzheimer´s Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1