Computer aided design of inhibitor molecules against Vpr protein from different HIV-1 subtypes.

In silico pharmacology Pub Date : 2025-02-08 eCollection Date: 2025-01-01 DOI:10.1007/s40203-025-00318-4
Joyeeta Datta, Satyabrata Majumder, Kalyan Giri
{"title":"Computer aided design of inhibitor molecules against Vpr protein from different HIV-1 subtypes.","authors":"Joyeeta Datta, Satyabrata Majumder, Kalyan Giri","doi":"10.1007/s40203-025-00318-4","DOIUrl":null,"url":null,"abstract":"<p><p>HIV-1 is a retrovirus that affects the human immune system and consequently leads to the development of AIDS. The high mutation rate in HIV-1 produces different subtypes which underscores the development of new therapeutics against it. This study aims to develop a novel small molecule that can be used as a potential inhibitor against the Vpr protein of all the subtypes of HIV-1. The druggable pockets of the Vpr protein of each subtype were identified and the conformational stability of these pockets was studied. The structure-based Drug Design method was used to design small molecules against the high-scoring pocket from each subtype individually using AutoGrow4 software. Molecules with strong binding affinity were selected from each subtype individually and binding affinity was checked for all the subtypes. Considering druggability and ADMET properties, we have identified two novel molecules that act as potential Vpr protein inhibitors. Both the molecules were shown to form stable complexes with the Vpr proteins of all the subtypes. The biological activity of both molecules was examined using DFT calculation. This study may provide some insight into developing of new therapies in HIV-1 treatment by interrupting protein-protein interaction.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-025-00318-4.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 1","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00318-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

HIV-1 is a retrovirus that affects the human immune system and consequently leads to the development of AIDS. The high mutation rate in HIV-1 produces different subtypes which underscores the development of new therapeutics against it. This study aims to develop a novel small molecule that can be used as a potential inhibitor against the Vpr protein of all the subtypes of HIV-1. The druggable pockets of the Vpr protein of each subtype were identified and the conformational stability of these pockets was studied. The structure-based Drug Design method was used to design small molecules against the high-scoring pocket from each subtype individually using AutoGrow4 software. Molecules with strong binding affinity were selected from each subtype individually and binding affinity was checked for all the subtypes. Considering druggability and ADMET properties, we have identified two novel molecules that act as potential Vpr protein inhibitors. Both the molecules were shown to form stable complexes with the Vpr proteins of all the subtypes. The biological activity of both molecules was examined using DFT calculation. This study may provide some insight into developing of new therapies in HIV-1 treatment by interrupting protein-protein interaction.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-025-00318-4.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repurposing doxycycline for the inhibition of monkeypox virus DNA polymerase: a comprehensive computational study. Tinospora cordifolia bioactive compounds as a novel sterol 14a-demethylase (CYP51) inhibitor: an in silico study. Molecular detection of mecA gene from methicillin-resistant Staphylococcus aureus isolated from clinical and environmental samples and its potential inhibition by phytochemicals using in vitro and in silico approach. In-silico evaluation of diffractaic acid as novel anti-diabetic inhibitor against dipeptidyl peptidase IV enzyme. Prediction of SafD adhesin strong binding peptides for pilus proteins assembly suppression in the prevention of Salmonella-induced biofilm formation using virtual mutagenesis studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1