Secret and shared keys recovery on hamming quasi-cyclic with SASCA

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS Designs, Codes and Cryptography Pub Date : 2025-02-12 DOI:10.1007/s10623-025-01575-2
Chloé Baïsse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas Aragon, Philippe Gaborit, Maxime Lecomte, Antoine Loiseau
{"title":"Secret and shared keys recovery on hamming quasi-cyclic with SASCA","authors":"Chloé Baïsse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas Aragon, Philippe Gaborit, Maxime Lecomte, Antoine Loiseau","doi":"10.1007/s10623-025-01575-2","DOIUrl":null,"url":null,"abstract":"<p>Soft Analytical Side Channel Attacks (SASCA) are a powerful family of Side Channel Attacks (SCA) that allows the recovery of secret values with only a small number of traces. Their effectiveness lies in the Belief Propagation (BP) algorithm, which enables efficient computation of the marginal distributions of intermediate values. Post-quantum schemes such as Kyber, and more recently, Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on HQC focused on Reed–Solomon (RS) codes and successfully retrieved the shared key with a high success rate for high noise levels using a single trace. In this work, we present new SASCA on HQC, where both the shared key and the secret key are targeted. Our attacks are realized on simulations. Unlike the previous SASCA, we take a closer look at the Reed–Muller (RM) code. The advantage of this choice is that the RM decoder is applied before the RS decoder, enabling attacks targeting both the secret key and shared key. We build a factor graph of the Fast Hadamard Transform (FHT) function from the HQC reference implementation of April 2023. The information recovered from BP allows us to retrieve the shared key with a single trace. In addition to the previous SASCA targeting HQC, we also manage to recover the secret key with two different chosen ciphertext attacks. One of them requires a single trace and is successful until high noise levels.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"18 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01575-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Soft Analytical Side Channel Attacks (SASCA) are a powerful family of Side Channel Attacks (SCA) that allows the recovery of secret values with only a small number of traces. Their effectiveness lies in the Belief Propagation (BP) algorithm, which enables efficient computation of the marginal distributions of intermediate values. Post-quantum schemes such as Kyber, and more recently, Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on HQC focused on Reed–Solomon (RS) codes and successfully retrieved the shared key with a high success rate for high noise levels using a single trace. In this work, we present new SASCA on HQC, where both the shared key and the secret key are targeted. Our attacks are realized on simulations. Unlike the previous SASCA, we take a closer look at the Reed–Muller (RM) code. The advantage of this choice is that the RM decoder is applied before the RS decoder, enabling attacks targeting both the secret key and shared key. We build a factor graph of the Fast Hadamard Transform (FHT) function from the HQC reference implementation of April 2023. The information recovered from BP allows us to retrieve the shared key with a single trace. In addition to the previous SASCA targeting HQC, we also manage to recover the secret key with two different chosen ciphertext attacks. One of them requires a single trace and is successful until high noise levels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
期刊最新文献
Constructing k-ary orientable sequences with asymptotically optimal length A new family of AMDS symbol-pair constacyclic codes of length $$\textbf{4p}$$ and symbol-pair distance $$\textbf{9}$$ Meet-in-the-middle attack on round-reduced SCARF under single pair-of-tweaks setting Introducing locality in some generalized AG codes Bounds and constructions of optimal symbol-pair codes with constant pair-weight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1