Highly reactive ZnFe2O4/TiO2 p-n heterojunction photocatalyst accelerates interfacial charge transfer for boosted photodegradation of ammonia nitrogen

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2025-02-11 DOI:10.1016/j.ces.2025.121361
Shuwen Ke , Matin Naghizadeh , Longhui Sun , Huijia Jin , Sheying Dong , Tinglin Huang
{"title":"Highly reactive ZnFe2O4/TiO2 p-n heterojunction photocatalyst accelerates interfacial charge transfer for boosted photodegradation of ammonia nitrogen","authors":"Shuwen Ke ,&nbsp;Matin Naghizadeh ,&nbsp;Longhui Sun ,&nbsp;Huijia Jin ,&nbsp;Sheying Dong ,&nbsp;Tinglin Huang","doi":"10.1016/j.ces.2025.121361","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive ammonia nitrogen (NH<sub>4</sub><sup>+</sup>-N) in wastewater worsens the living conditions of aquatic organisms and causes chronic poisoning of humans. In this work, the ZnFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> p-n heterojunction photocatalyst was prepared to remove NH<sub>4</sub><sup>+</sup>-N. ZT-10 (the molar ratio of ZnFe<sub>2</sub>O<sub>4</sub> to TiO<sub>2</sub> was 1:10) removed 98.52 % of NH<sub>4</sub><sup>+</sup>-N (50 mg/L) at pH 10 in 90 min with a stabilized crystal structure maintained over four cycles. The experiment results demonstrated universal adaptability to various representative contaminants in actual waters. The meaningful roles of superoxide radical (∙O<sub>2</sub><sup>−</sup>), hydroxyl radical (∙OH), and holes (h<sup>+</sup>) in NH<sub>4</sub><sup>+</sup>-N photoreduction were confirmed by radical trapping experiments. The photocatalytic mechanism revealed that the improvement of photodegradation activity was primarily due<!--> <!-->to the internal electric field (IEF) generated at the p-n heterojunction interface, which facilitated the precise migration and aggregation of photoinduced electrons (e<sup>-</sup>) and holes to space reaction sites, realizing the highly efficient surface catalysis of ZnFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> photocatalysts.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"307 ","pages":"Article 121361"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925001848","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive ammonia nitrogen (NH4+-N) in wastewater worsens the living conditions of aquatic organisms and causes chronic poisoning of humans. In this work, the ZnFe2O4/TiO2 p-n heterojunction photocatalyst was prepared to remove NH4+-N. ZT-10 (the molar ratio of ZnFe2O4 to TiO2 was 1:10) removed 98.52 % of NH4+-N (50 mg/L) at pH 10 in 90 min with a stabilized crystal structure maintained over four cycles. The experiment results demonstrated universal adaptability to various representative contaminants in actual waters. The meaningful roles of superoxide radical (∙O2), hydroxyl radical (∙OH), and holes (h+) in NH4+-N photoreduction were confirmed by radical trapping experiments. The photocatalytic mechanism revealed that the improvement of photodegradation activity was primarily due to the internal electric field (IEF) generated at the p-n heterojunction interface, which facilitated the precise migration and aggregation of photoinduced electrons (e-) and holes to space reaction sites, realizing the highly efficient surface catalysis of ZnFe2O4/TiO2 photocatalysts.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高活性ZnFe2O4/TiO2 p-n异质结光催化剂加速界面电荷转移,促进氨氮的光降解
废水中过量的氨氮(NH4+-N)恶化了水生生物的生存条件,导致人类慢性中毒。本文制备了用于去除NH4+-N的ZnFe2O4/TiO2 p-n异质结光催化剂。ZT-10 (ZnFe2O4与TiO2的摩尔比为1:10)在pH为10的条件下,在90 min内脱除了98.52% %的NH4+-N(50 mg/L),并在4次循环中保持了稳定的晶体结构。实验结果表明,该方法对实际水体中各种代表性污染物具有普遍的适应性。通过自由基捕获实验证实了超氧自由基(∙O2−)、羟基自由基(∙OH)和空穴(h+)在NH4+-N光还原中的重要作用。光催化机理表明,ZnFe2O4/TiO2光催化剂的光降解活性的提高主要是由于在p-n异质结界面处产生的内部电场(IEF)促进了光诱导电子(e-)和空穴向空间反应位点的精确迁移和聚集,实现了ZnFe2O4/TiO2光催化剂的高效表面催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Enhanced mixing with lower energy: a TPMS-gyroid static mixer for efficient turbulent flow Simulation of carbonation behavior of calcium-based adsorbents for CO2 capture based on a fractal pore size distribution- dynamic random pore coupling particle model Atomistic view of green steel: simulation of early-stage direct reduction of wüstite (FeO) by hydrogen Unlocking the catalytic hydrolysis and conversion mechanisms for cellobiose within H-form zeolites: towards efficient utilization of cellulosic biomass Separation of phenol and pyridine from coal tar using Ionic Liquid: Experimental and Mechanistic studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1