{"title":"Spectrotemporal fusion: Generation of frequent hyperspectral satellite imagery","authors":"Shuheng Zhao , Xiaolin Zhu , Xiaoyue Tan , Jiaqi Tian","doi":"10.1016/j.rse.2025.114639","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in remote sensing technology have facilitated the emergence of high-quality hyperspectral satellite sensors with spatial resolutions comparable to well-established multispectral platforms like Landsat series and Sentinel-2. However, most hyperspectral satellite datasets suffer from limited temporal resolution, hindering the effective monitoring of rapid changes on the Earth's surface. To address this issue, we proposed an innovative fusion strategy named spectrotemporal fusion (SpecTF). Through SpecTF, high-frequency temporal information from multispectral images (MSIs) and narrow-band spectral information from hyperspectral images (HSIs) can be blended for applications that require high resolutions in both temporal and spectral domains. SpecTF first leverages a limited number of historical HSI-MSI pairs to learn the cross-sensor spectral mapping and then fuses this spectral mapping with broad-band time series to reconstruct narrow-band ones. The performance of SpecTF was evaluated using typical satellite datasets across six sites and a suite of field measurements. The average root mean square error (RMSE) and spectral angle of SpecTF are 0.0224 ± 0.0142 and 3.3734 ± 1.5476°, respectively, which represent a 24.83 % and 33.23 % reduction in error compared to the second-best method. The experimental results demonstrate that the synthetic frequent narrow-band products exhibit satisfactory quality and improved accuracy of land surface parameter retrieval compared to real broad-band observations.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"319 ","pages":"Article 114639"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725000434","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in remote sensing technology have facilitated the emergence of high-quality hyperspectral satellite sensors with spatial resolutions comparable to well-established multispectral platforms like Landsat series and Sentinel-2. However, most hyperspectral satellite datasets suffer from limited temporal resolution, hindering the effective monitoring of rapid changes on the Earth's surface. To address this issue, we proposed an innovative fusion strategy named spectrotemporal fusion (SpecTF). Through SpecTF, high-frequency temporal information from multispectral images (MSIs) and narrow-band spectral information from hyperspectral images (HSIs) can be blended for applications that require high resolutions in both temporal and spectral domains. SpecTF first leverages a limited number of historical HSI-MSI pairs to learn the cross-sensor spectral mapping and then fuses this spectral mapping with broad-band time series to reconstruct narrow-band ones. The performance of SpecTF was evaluated using typical satellite datasets across six sites and a suite of field measurements. The average root mean square error (RMSE) and spectral angle of SpecTF are 0.0224 ± 0.0142 and 3.3734 ± 1.5476°, respectively, which represent a 24.83 % and 33.23 % reduction in error compared to the second-best method. The experimental results demonstrate that the synthetic frequent narrow-band products exhibit satisfactory quality and improved accuracy of land surface parameter retrieval compared to real broad-band observations.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.