M1 large-scale network dynamics support human motor resonance and its plastic reshaping

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-02-09 DOI:10.1016/j.neuroimage.2025.121082
Giacomo Guidali , Eleonora Arrigoni , Nadia Bolognini , Alberto Pisoni
{"title":"M1 large-scale network dynamics support human motor resonance and its plastic reshaping","authors":"Giacomo Guidali ,&nbsp;Eleonora Arrigoni ,&nbsp;Nadia Bolognini ,&nbsp;Alberto Pisoni","doi":"10.1016/j.neuroimage.2025.121082","DOIUrl":null,"url":null,"abstract":"<div><div>Motor resonance – the facilitation of corticospinal excitability during action observation – is considered a proxy of <em>Action Observation Network</em> (AON) recruitment in humans, with profound implications for social cognition and action understanding. Despite extensive research, the neural underpinnings supporting motor resonance emergence and rewriting remain unexplored.</div><div>In this study, we investigated the role of sensorimotor associative learning in neural mechanisms underlying the motor resonance phenomenon. To this aim, we applied cross-systems paired associative stimulation (PAS) to induce novel visuomotor associations in the human brain. This protocol, which repeatedly pairs transcranial magnetic stimulation (TMS) pulses over the primary motor cortex (M1) with visual stimuli of actions, drives the emergence of an atypical, PAS-conditioned motor resonance response. Using TMS and electroencephalography (EEG) co-registration during action observation, we tracked the M1 functional connectivity profile during this process to map the inter-areal connectivity profiles associated with typical and PAS-induced motor resonance phenomena.</div><div>Besides confirming, at the corticospinal level, the emergence of newly acquired motor resonance responses at the cost of typical ones after PAS administration, our results reveal dissociable aspects of motor resonance in M1 interregional communication. On the one side, typical motor resonance effects acquired through the lifespan are associated with prominent M1 alpha-band and reduced beta-band connectivity, which might facilitate the corticospinal output while integrating visuomotor information. Conversely, the atypical PAS-induced motor resonance is linked to M1 beta-band cortical connectivity modulations, only partially overlapping with interregional communication patterns related to the typical mirroring responses. This evidence suggests that beta-phase synchronization may be the critical mechanism supporting the formation of motor resonance by coordinating the activity of motor regions during action observation, which also involves alpha-band top-down control of frontal areas.</div><div>These findings provide new insights into the neural dynamics underlying (typical and newly acquired) motor resonance, highlighting the role of large-scale interregional communication in sensorimotor associative learning within the AON.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"308 ","pages":"Article 121082"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000849","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Motor resonance – the facilitation of corticospinal excitability during action observation – is considered a proxy of Action Observation Network (AON) recruitment in humans, with profound implications for social cognition and action understanding. Despite extensive research, the neural underpinnings supporting motor resonance emergence and rewriting remain unexplored.
In this study, we investigated the role of sensorimotor associative learning in neural mechanisms underlying the motor resonance phenomenon. To this aim, we applied cross-systems paired associative stimulation (PAS) to induce novel visuomotor associations in the human brain. This protocol, which repeatedly pairs transcranial magnetic stimulation (TMS) pulses over the primary motor cortex (M1) with visual stimuli of actions, drives the emergence of an atypical, PAS-conditioned motor resonance response. Using TMS and electroencephalography (EEG) co-registration during action observation, we tracked the M1 functional connectivity profile during this process to map the inter-areal connectivity profiles associated with typical and PAS-induced motor resonance phenomena.
Besides confirming, at the corticospinal level, the emergence of newly acquired motor resonance responses at the cost of typical ones after PAS administration, our results reveal dissociable aspects of motor resonance in M1 interregional communication. On the one side, typical motor resonance effects acquired through the lifespan are associated with prominent M1 alpha-band and reduced beta-band connectivity, which might facilitate the corticospinal output while integrating visuomotor information. Conversely, the atypical PAS-induced motor resonance is linked to M1 beta-band cortical connectivity modulations, only partially overlapping with interregional communication patterns related to the typical mirroring responses. This evidence suggests that beta-phase synchronization may be the critical mechanism supporting the formation of motor resonance by coordinating the activity of motor regions during action observation, which also involves alpha-band top-down control of frontal areas.
These findings provide new insights into the neural dynamics underlying (typical and newly acquired) motor resonance, highlighting the role of large-scale interregional communication in sensorimotor associative learning within the AON.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Video communication mitigate feelings of friendliness: A functional near-infrared spectroscopy study Corrigendum to "Specialization for different memory dimensions in brain activity evoked by cued recollection" [NeuroImage 308 (2025) 121068]. EEG Microstate Syntax Analysis: A Review of Methodological Challenges and Advances. A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals. Neural Mechanisms of Intersensory Switching: Evidence for Delayed Sensory Processing and Increased Cognitive Demands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1