Jyoti Prakash , Abhishek Tiwari , Christian Hammer
{"title":"Modular unification of unilingual pointer analyses to multilingual FFI-based programs","authors":"Jyoti Prakash , Abhishek Tiwari , Christian Hammer","doi":"10.1016/j.scico.2025.103278","DOIUrl":null,"url":null,"abstract":"<div><div>Modular analysis of polyglot applications is challenging because flows of heap objects must be resolved across language boundaries. The state-of-the-art analyses for polyglot applications have two fundamental limitations. First, they assume explicit boundaries between the guest and the host language to determine inter-language dataflows. Second, they rely on specific analyses of the host and guest languages. The former assumption is impractical concerning recent advancements in polyglot programming techniques, while the latter disregards advances in pointer analysis of the underlying languages. In this work, we propose to extend existing pointer analyses with a novel summary specialization technique that unifies points-to sets across language boundaries. Our novel technique leverages combinations of host and guest analyses with minor modifications. We demonstrate the efficacy and generalizability of our approach by evaluating it with two polyglot language models: Java-C communication via Android's NDK and Java-Python communication in GraalVM.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"243 ","pages":"Article 103278"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000176","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Modular analysis of polyglot applications is challenging because flows of heap objects must be resolved across language boundaries. The state-of-the-art analyses for polyglot applications have two fundamental limitations. First, they assume explicit boundaries between the guest and the host language to determine inter-language dataflows. Second, they rely on specific analyses of the host and guest languages. The former assumption is impractical concerning recent advancements in polyglot programming techniques, while the latter disregards advances in pointer analysis of the underlying languages. In this work, we propose to extend existing pointer analyses with a novel summary specialization technique that unifies points-to sets across language boundaries. Our novel technique leverages combinations of host and guest analyses with minor modifications. We demonstrate the efficacy and generalizability of our approach by evaluating it with two polyglot language models: Java-C communication via Android's NDK and Java-Python communication in GraalVM.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.