Developmental exposure to an environmentally relevant dose of Bisphenol S impairs postnatal growth and disrupts placental transcriptional profile in female rat
J. Fudvoye , D. Lopez-Rodriguez , C. Glachet , D. Franssen , Q. Terwagne , A. Lavergne , A.F. Donneau , C. Munaut , P. Dehan , A. Lomniczi , A.S. Parent
{"title":"Developmental exposure to an environmentally relevant dose of Bisphenol S impairs postnatal growth and disrupts placental transcriptional profile in female rat","authors":"J. Fudvoye , D. Lopez-Rodriguez , C. Glachet , D. Franssen , Q. Terwagne , A. Lavergne , A.F. Donneau , C. Munaut , P. Dehan , A. Lomniczi , A.S. Parent","doi":"10.1016/j.reprotox.2025.108854","DOIUrl":null,"url":null,"abstract":"<div><div>Because of its possible adverse effects on human health and its ubiquitous nature, Bisphenol A (BPA) is gradually being replaced by presumably safer alternatives like Bisphenol S (BPS). However, data regarding the effects of developmental exposure to BPS on pregnancy and fetal outcomes are very scarce. Here we show that perinatal exposure to BPS at a very low dose significantly impairs postnatal growth and affects the placental transcriptome in rats. Oral exposure one week before mating and during gestation and lactation to a very low dose of BPS (25 ng/kg/day) is associated with impaired postnatal growth without significant difference in fetal weight on gestational day 18 in females. In contrast, in males, exposure to BPS 25 decreased fetal weight on gestational day 18 but growth restriction did not persist into adulthood. In female, exposure to this very low dose of BPS decreased the placental mRNA expression of fucosyltransferase2 (<em>Fut2</em>), pregnancy-specific glycoprotein 22 (<em>Psg22</em>), Wnt family member 7b (<em>Wnt7b</em>) which are involved in early placental development. Placental DNA methylation of steroid receptor coactivator 2 (<em>src2</em>), a key mediator of steroid induced decidualization, was significantly reduced, while placental <em>src2</em> mRNA expression was unaffected. These results suggest that early exposure to a very low dose of BPS has long term consequences on growth trajectory and is associated with placental dysregulation.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"132 ","pages":"Article 108854"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623825000255","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Because of its possible adverse effects on human health and its ubiquitous nature, Bisphenol A (BPA) is gradually being replaced by presumably safer alternatives like Bisphenol S (BPS). However, data regarding the effects of developmental exposure to BPS on pregnancy and fetal outcomes are very scarce. Here we show that perinatal exposure to BPS at a very low dose significantly impairs postnatal growth and affects the placental transcriptome in rats. Oral exposure one week before mating and during gestation and lactation to a very low dose of BPS (25 ng/kg/day) is associated with impaired postnatal growth without significant difference in fetal weight on gestational day 18 in females. In contrast, in males, exposure to BPS 25 decreased fetal weight on gestational day 18 but growth restriction did not persist into adulthood. In female, exposure to this very low dose of BPS decreased the placental mRNA expression of fucosyltransferase2 (Fut2), pregnancy-specific glycoprotein 22 (Psg22), Wnt family member 7b (Wnt7b) which are involved in early placental development. Placental DNA methylation of steroid receptor coactivator 2 (src2), a key mediator of steroid induced decidualization, was significantly reduced, while placental src2 mRNA expression was unaffected. These results suggest that early exposure to a very low dose of BPS has long term consequences on growth trajectory and is associated with placental dysregulation.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.