Developmental exposure to an environmentally relevant dose of Bisphenol S impairs postnatal growth and disrupts placental transcriptional profile in female rat

IF 3.3 4区 医学 Q2 REPRODUCTIVE BIOLOGY Reproductive toxicology Pub Date : 2025-02-09 DOI:10.1016/j.reprotox.2025.108854
J. Fudvoye , D. Lopez-Rodriguez , C. Glachet , D. Franssen , Q. Terwagne , A. Lavergne , A.F. Donneau , C. Munaut , P. Dehan , A. Lomniczi , A.S. Parent
{"title":"Developmental exposure to an environmentally relevant dose of Bisphenol S impairs postnatal growth and disrupts placental transcriptional profile in female rat","authors":"J. Fudvoye ,&nbsp;D. Lopez-Rodriguez ,&nbsp;C. Glachet ,&nbsp;D. Franssen ,&nbsp;Q. Terwagne ,&nbsp;A. Lavergne ,&nbsp;A.F. Donneau ,&nbsp;C. Munaut ,&nbsp;P. Dehan ,&nbsp;A. Lomniczi ,&nbsp;A.S. Parent","doi":"10.1016/j.reprotox.2025.108854","DOIUrl":null,"url":null,"abstract":"<div><div>Because of its possible adverse effects on human health and its ubiquitous nature, Bisphenol A (BPA) is gradually being replaced by presumably safer alternatives like Bisphenol S (BPS). However, data regarding the effects of developmental exposure to BPS on pregnancy and fetal outcomes are very scarce. Here we show that perinatal exposure to BPS at a very low dose significantly impairs postnatal growth and affects the placental transcriptome in rats. Oral exposure one week before mating and during gestation and lactation to a very low dose of BPS (25 ng/kg/day) is associated with impaired postnatal growth without significant difference in fetal weight on gestational day 18 in females. In contrast, in males, exposure to BPS 25 decreased fetal weight on gestational day 18 but growth restriction did not persist into adulthood. In female, exposure to this very low dose of BPS decreased the placental mRNA expression of fucosyltransferase2 (<em>Fut2</em>), pregnancy-specific glycoprotein 22 (<em>Psg22</em>), Wnt family member 7b (<em>Wnt7b</em>) which are involved in early placental development. Placental DNA methylation of steroid receptor coactivator 2 (<em>src2</em>), a key mediator of steroid induced decidualization, was significantly reduced, while placental <em>src2</em> mRNA expression was unaffected. These results suggest that early exposure to a very low dose of BPS has long term consequences on growth trajectory and is associated with placental dysregulation.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"132 ","pages":"Article 108854"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623825000255","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Because of its possible adverse effects on human health and its ubiquitous nature, Bisphenol A (BPA) is gradually being replaced by presumably safer alternatives like Bisphenol S (BPS). However, data regarding the effects of developmental exposure to BPS on pregnancy and fetal outcomes are very scarce. Here we show that perinatal exposure to BPS at a very low dose significantly impairs postnatal growth and affects the placental transcriptome in rats. Oral exposure one week before mating and during gestation and lactation to a very low dose of BPS (25 ng/kg/day) is associated with impaired postnatal growth without significant difference in fetal weight on gestational day 18 in females. In contrast, in males, exposure to BPS 25 decreased fetal weight on gestational day 18 but growth restriction did not persist into adulthood. In female, exposure to this very low dose of BPS decreased the placental mRNA expression of fucosyltransferase2 (Fut2), pregnancy-specific glycoprotein 22 (Psg22), Wnt family member 7b (Wnt7b) which are involved in early placental development. Placental DNA methylation of steroid receptor coactivator 2 (src2), a key mediator of steroid induced decidualization, was significantly reduced, while placental src2 mRNA expression was unaffected. These results suggest that early exposure to a very low dose of BPS has long term consequences on growth trajectory and is associated with placental dysregulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reproductive toxicology
Reproductive toxicology 生物-毒理学
CiteScore
6.50
自引率
3.00%
发文量
131
审稿时长
45 days
期刊介绍: Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine. All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.
期刊最新文献
The potential role of ascorbic acid in attenuating infertility induced by emamectin benzoate via suppressing oxidative stress and ameliorating sperm count in male rats. Hormonal mechanism and pathogenetic therapy of citalopram-induced infertility in female rats. The biological effects of bisphenol AF in reproduction and development: What do we know so far? The impact of triadimenol on male fertility: An in vitro study and molecular docking examination Blastocyst exposure to plastic during mice in vitro fertilization impacts placental development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1