Maoqing Tian , Xiaofei Wang , Meng Zhang , Chen Li , Yuhan Xu , Xinghua Chen , Cheng Chen , Zhongping Wei , Xiaoyan Li , Guohua Ding , Lu Zhang , Huiming Wang , Hua Gan
{"title":"DEAD-box protein 21 promotes renal fibrosis via p21-dependent cell cycle arrest in proximal tubular epithelial cells","authors":"Maoqing Tian , Xiaofei Wang , Meng Zhang , Chen Li , Yuhan Xu , Xinghua Chen , Cheng Chen , Zhongping Wei , Xiaoyan Li , Guohua Ding , Lu Zhang , Huiming Wang , Hua Gan","doi":"10.1016/j.cellsig.2025.111654","DOIUrl":null,"url":null,"abstract":"<div><div>Renal interstitial fibrosis is the final common outcome of various chronic kidney diseases (CKD). Renal tubular epithelial cells (TECs) G2/M cell cycle arrest play a pivotal role in renal fibrosis. Although RNA-binding proteins (RBPs) are implicated in organ fibrosis, the underlying mechanisms remain poorly understood. Here, we identify DEAD-box protein 21 (DDX21), a representative RBP, as highly expressed in fibrotic renal tissues, especially in TECs. Moreover, DDX21 expression is positively correlated with renal function decline in CKD patients, underscoring its role in disease progression. TECs-specific deletion of Ddx21 alleviates cell cycle arrest in G2/M, and attenuates fibrotic responses. Mechanistically, silencing DDX21 reduces p21 expression at both the mRNA and protein levels and decreases cell apoptosis, indicating that DDX21 promotes G2/M cell cycle arrest by regulating the p21 signaling pathway. This study suggests that DDX21 may serve as a promising therapeutic target for kidney fibrosis.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"128 ","pages":"Article 111654"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000671","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal interstitial fibrosis is the final common outcome of various chronic kidney diseases (CKD). Renal tubular epithelial cells (TECs) G2/M cell cycle arrest play a pivotal role in renal fibrosis. Although RNA-binding proteins (RBPs) are implicated in organ fibrosis, the underlying mechanisms remain poorly understood. Here, we identify DEAD-box protein 21 (DDX21), a representative RBP, as highly expressed in fibrotic renal tissues, especially in TECs. Moreover, DDX21 expression is positively correlated with renal function decline in CKD patients, underscoring its role in disease progression. TECs-specific deletion of Ddx21 alleviates cell cycle arrest in G2/M, and attenuates fibrotic responses. Mechanistically, silencing DDX21 reduces p21 expression at both the mRNA and protein levels and decreases cell apoptosis, indicating that DDX21 promotes G2/M cell cycle arrest by regulating the p21 signaling pathway. This study suggests that DDX21 may serve as a promising therapeutic target for kidney fibrosis.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.