A 3D micromechanical model for hyperelastic rubber-like materials and its numerical resolution by the Asymptotic Numerical Method (ANM)

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2025-02-05 DOI:10.1016/j.euromechsol.2025.105594
Ayoub Ouardi , Abdellah Hamdaoui , Makrem Arfaoui , Adnane Boukamel , Noureddine Damil
{"title":"A 3D micromechanical model for hyperelastic rubber-like materials and its numerical resolution by the Asymptotic Numerical Method (ANM)","authors":"Ayoub Ouardi ,&nbsp;Abdellah Hamdaoui ,&nbsp;Makrem Arfaoui ,&nbsp;Adnane Boukamel ,&nbsp;Noureddine Damil","doi":"10.1016/j.euromechsol.2025.105594","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> micromechanical model is developed to describe the behavior of macromolecular chains and to reflect the hyperelastic behavior of rubber-like materials. This model generalizes the <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> model recently developed in Ouardi (2023). The behavior law is defined by the minimization of a potential energy, each macromolecular chain has been represented by elastic segments linked by nonlinear elastic spiral nodes. We thus obtain a model with only three characteristic parameters. We investigate, in the <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> case, the effect of the number of macro-chain segments and the shape of the Representative Volume Element (RVE) using a high-order algorithm of the family of the Asymptotic Numerical Method (ANM) (Cochelin, 2007). In the ANM algorithm, the solution of the nonlinear problem is sought branch by branch, each branch being represented by a Taylor series. In this way, this high-order algorithm makes it easier to continuously investigate the solution curves. Numerical simulations are presented on different RVEs, four and eight chains models (Arruda and Boyce, 1993), under three types of boundary conditions: uniaxial tension, pure shear and equibiaxial tension. These numerical simulations are compared with experimental data from Treloar (1944) to identify the parameters material and to demonstrate the robustness of the proposed model. The studied chains models show a slight influence of the number of macro-chains and the number of segments in the RVE.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105594"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000282","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a 3D micromechanical model is developed to describe the behavior of macromolecular chains and to reflect the hyperelastic behavior of rubber-like materials. This model generalizes the 2D model recently developed in Ouardi (2023). The behavior law is defined by the minimization of a potential energy, each macromolecular chain has been represented by elastic segments linked by nonlinear elastic spiral nodes. We thus obtain a model with only three characteristic parameters. We investigate, in the 3D case, the effect of the number of macro-chain segments and the shape of the Representative Volume Element (RVE) using a high-order algorithm of the family of the Asymptotic Numerical Method (ANM) (Cochelin, 2007). In the ANM algorithm, the solution of the nonlinear problem is sought branch by branch, each branch being represented by a Taylor series. In this way, this high-order algorithm makes it easier to continuously investigate the solution curves. Numerical simulations are presented on different RVEs, four and eight chains models (Arruda and Boyce, 1993), under three types of boundary conditions: uniaxial tension, pure shear and equibiaxial tension. These numerical simulations are compared with experimental data from Treloar (1944) to identify the parameters material and to demonstrate the robustness of the proposed model. The studied chains models show a slight influence of the number of macro-chains and the number of segments in the RVE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
Non-linear deformation mechanism of circular thin film/substrate systems under film stress A chemomechanical coupling model for diffusion and stress analysis in polymer-based anti-corrosion coatings A 3D micromechanical model for hyperelastic rubber-like materials and its numerical resolution by the Asymptotic Numerical Method (ANM) Investigation on structural design and grounding characteristics of two dimensional double-U honeycomb non-pneumatic tires Experimental and micromechanical investigation of precipitate size effects on the creep behaviour of a high chromium martensitic steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1