Effects of tensile and compressive stress on bone resorption and formation parameters surrounding dental implants

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2025-02-04 DOI:10.1016/j.jmbbm.2025.106928
Bin Li , Natsuko Murakami , Cangyou Xie , Yuki Mouri , Hitomi Matsuno , Hisami Okawara , Kazuhiro Aoki , Noriyuki Wakabayashi
{"title":"Effects of tensile and compressive stress on bone resorption and formation parameters surrounding dental implants","authors":"Bin Li ,&nbsp;Natsuko Murakami ,&nbsp;Cangyou Xie ,&nbsp;Yuki Mouri ,&nbsp;Hitomi Matsuno ,&nbsp;Hisami Okawara ,&nbsp;Kazuhiro Aoki ,&nbsp;Noriyuki Wakabayashi","doi":"10.1016/j.jmbbm.2025.106928","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of tensile and compressive stresses on peri-implant bone remodeling activity. Titanium implants were inserted into the extracted maxillary molar sites of four-week-old male mice and allowed to heal. A sustained load of 0.9 N, inclined at 30° from palatal to buccal, was applied for 30 min daily over 7 days. Non-loaded implants served as a controls. Non-demineralized sections parallel to the occlusal plane were prepared 150 μm below the alveolar crest, and bone morphometry parameters related to bone resorption and formation were measured within a 120 μm-wide peri-implant region, divided into distal, buccal, mesial, and palatal quarters. Stress distribution was calculated using an animal-specific three-dimensional (3D) finite element (FE) model based on microfocus CT data. In the buccal quarter, where compressive stress was statistically higher than in the other quarters, and the mesial quarter, where tensile stress was greater than that in the other quarters, bone remodeling parameters increased significantly upon loading (p &lt; 0.05), aligning with previous <em>in vivo</em> findings that mechanical stress influences bone-related cell activity. However, no significant parameter changes were observed in the distal quarter, where both tensile and compressive stresses were higher than those in the other quarters. This suggested regional suppression of remodeling activity by a simultaneous concentration of tension and compression. These findings offer crucial insights into the preservation and maintenance of the peri-implant bone under mechanical stress from occlusal forces, highlighting the role of stress distribution in bone remodeling.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"165 ","pages":"Article 106928"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612500044X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of tensile and compressive stresses on peri-implant bone remodeling activity. Titanium implants were inserted into the extracted maxillary molar sites of four-week-old male mice and allowed to heal. A sustained load of 0.9 N, inclined at 30° from palatal to buccal, was applied for 30 min daily over 7 days. Non-loaded implants served as a controls. Non-demineralized sections parallel to the occlusal plane were prepared 150 μm below the alveolar crest, and bone morphometry parameters related to bone resorption and formation were measured within a 120 μm-wide peri-implant region, divided into distal, buccal, mesial, and palatal quarters. Stress distribution was calculated using an animal-specific three-dimensional (3D) finite element (FE) model based on microfocus CT data. In the buccal quarter, where compressive stress was statistically higher than in the other quarters, and the mesial quarter, where tensile stress was greater than that in the other quarters, bone remodeling parameters increased significantly upon loading (p < 0.05), aligning with previous in vivo findings that mechanical stress influences bone-related cell activity. However, no significant parameter changes were observed in the distal quarter, where both tensile and compressive stresses were higher than those in the other quarters. This suggested regional suppression of remodeling activity by a simultaneous concentration of tension and compression. These findings offer crucial insights into the preservation and maintenance of the peri-implant bone under mechanical stress from occlusal forces, highlighting the role of stress distribution in bone remodeling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Editorial Board Mechanical modulation of docetaxel-treated bladder cancer cells by various changes in cytoskeletal structures Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy On the repeatability of wrinkling topography patterns in the fingers of water immersed human skin Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1