Eduardo S. Saraiva , Lorenzo Govoni , Aurélio T. Salton , Jeferson V. Flores , Andrea Cristofaro
{"title":"Practical output regulation of robotic manipulators: A comparison study","authors":"Eduardo S. Saraiva , Lorenzo Govoni , Aurélio T. Salton , Jeferson V. Flores , Andrea Cristofaro","doi":"10.1016/j.ejcon.2025.101199","DOIUrl":null,"url":null,"abstract":"<div><div>The nonlinear dynamics and uncertainties of robotic manipulators necessitate advanced control strategies to ensure precise output regulation under challenging conditions. This paper compares three control methodologies: Computed Torque Control (CTC), Sliding Mode Control (SMC), and an Internal Model-Based Approach (IMB) with Differential-Algebraic Representation. Experimental validation on the KUKA LWR IV+ robotic manipulator highlights differences in their performance across scenarios involving varying payloads and modeling inaccuracies. The analysis emphasizes the trade-offs among control effort, error convergence, and robustness, offering insights into the suitability of each approach depending on the application’s requirements.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"82 ","pages":"Article 101199"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358025000275","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The nonlinear dynamics and uncertainties of robotic manipulators necessitate advanced control strategies to ensure precise output regulation under challenging conditions. This paper compares three control methodologies: Computed Torque Control (CTC), Sliding Mode Control (SMC), and an Internal Model-Based Approach (IMB) with Differential-Algebraic Representation. Experimental validation on the KUKA LWR IV+ robotic manipulator highlights differences in their performance across scenarios involving varying payloads and modeling inaccuracies. The analysis emphasizes the trade-offs among control effort, error convergence, and robustness, offering insights into the suitability of each approach depending on the application’s requirements.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.