AI agents in chemical research: GVIM – an intelligent research assistant system†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2025-01-10 DOI:10.1039/D4DD00398E
Kangyong Ma
{"title":"AI agents in chemical research: GVIM – an intelligent research assistant system†","authors":"Kangyong Ma","doi":"10.1039/D4DD00398E","DOIUrl":null,"url":null,"abstract":"<p >This work utilizes collected and organized instructional data from the field of chemical science to fine-tune mainstream open-source large language models. To objectively evaluate the performance of the fine-tuned models, we have developed an automated scoring system specifically for the chemistry domain, ensuring the accuracy and reliability of the evaluation results. Building on this foundation, we have designed an innovative chemical intelligent assistant system. This system employs the fine-tuned Mistral NeMo model as one of its primary models and features a mechanism for flexibly invoking various advanced models. This design fully considers the rapid iteration characteristics of large language models, ensuring that the system can continuously leverage the latest and most powerful AI capabilities. A major highlight of this system is its deep integration of professional knowledge and requirements from the chemistry field. By incorporating specialized functions such as molecular visualization, SMILES string processing, and chemical literature retrieval, the system significantly enhances its practical value in chemical research and applications. More notably, through carefully designed mechanisms for knowledge accumulation, skill acquisition, performance evaluation, and group collaboration, the system can optimize its professional abilities and interaction quality to a certain extent.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 355-375"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00398e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00398e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work utilizes collected and organized instructional data from the field of chemical science to fine-tune mainstream open-source large language models. To objectively evaluate the performance of the fine-tuned models, we have developed an automated scoring system specifically for the chemistry domain, ensuring the accuracy and reliability of the evaluation results. Building on this foundation, we have designed an innovative chemical intelligent assistant system. This system employs the fine-tuned Mistral NeMo model as one of its primary models and features a mechanism for flexibly invoking various advanced models. This design fully considers the rapid iteration characteristics of large language models, ensuring that the system can continuously leverage the latest and most powerful AI capabilities. A major highlight of this system is its deep integration of professional knowledge and requirements from the chemistry field. By incorporating specialized functions such as molecular visualization, SMILES string processing, and chemical literature retrieval, the system significantly enhances its practical value in chemical research and applications. More notably, through carefully designed mechanisms for knowledge accumulation, skill acquisition, performance evaluation, and group collaboration, the system can optimize its professional abilities and interaction quality to a certain extent.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides Commit: Mini article for dynamic reporting of incremental improvements to previous scholarly work Artificial intelligence-assisted electrochemical sensors for qualitative and semi-quantitative multiplexed analyses† Exploring the expertise of large language models in materials science and metallurgical engineering†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1