Digital features of chemical elements extracted from local geometries in crystal structures†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2025-01-03 DOI:10.1039/D4DD00346B
Andrij Vasylenko, Dmytro Antypov, Sven Schewe, Luke M. Daniels, John B. Claridge, Matthew S. Dyer and Matthew J. Rosseinsky
{"title":"Digital features of chemical elements extracted from local geometries in crystal structures†","authors":"Andrij Vasylenko, Dmytro Antypov, Sven Schewe, Luke M. Daniels, John B. Claridge, Matthew S. Dyer and Matthew J. Rosseinsky","doi":"10.1039/D4DD00346B","DOIUrl":null,"url":null,"abstract":"<p >Computational modelling of materials using machine learning (ML) and historical data has become integral to materials research across physical sciences. The accuracy of predictions for material properties using computational modelling is strongly affected by the choice of the numerical representation that describes a material's composition, crystal structure and constituent chemical elements. Structure, both extended and local, has a controlling effect on properties, but often only the composition of a candidate material is available. However, existing elemental and compositional descriptors lack direct access to structural insights such as the coordination geometry of an element. In this study, we introduce Local Environment-induced Atomic Features (LEAFs), which incorporate information about the statistically preferred local coordination geometry at an element in a crystal structure into descriptors for chemical elements, enabling the modelling of materials solely as compositions without requiring knowledge of their crystal structure. In the crystal structure of a material, each atomic site can be quantitatively described by similarity to common local structural motifs; by aggregating these unique features of similarity from the experimentally verified crystal structures of inorganic materials, LEAFs formulate a set of descriptors for chemical elements and compositions. The direct connection of LEAFs to the local coordination geometry enables the analysis of ML model property predictions, linking compositions to the underlying structure–property relationships. We demonstrate the versatility of LEAFs in structure-informed property predictions for compositions, mapping of chemical space in structural terms, and prioritisation of elemental substitutions. Based on the latter for predicting crystal structures of binary ionic compounds, LEAFs achieve the state-of-the-art accuracy of 86%. These results suggest that the structurally informed description of chemical elements and compositions developed in this work can effectively guide synthetic efforts in discovering new materials.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 477-485"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00346b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00346b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational modelling of materials using machine learning (ML) and historical data has become integral to materials research across physical sciences. The accuracy of predictions for material properties using computational modelling is strongly affected by the choice of the numerical representation that describes a material's composition, crystal structure and constituent chemical elements. Structure, both extended and local, has a controlling effect on properties, but often only the composition of a candidate material is available. However, existing elemental and compositional descriptors lack direct access to structural insights such as the coordination geometry of an element. In this study, we introduce Local Environment-induced Atomic Features (LEAFs), which incorporate information about the statistically preferred local coordination geometry at an element in a crystal structure into descriptors for chemical elements, enabling the modelling of materials solely as compositions without requiring knowledge of their crystal structure. In the crystal structure of a material, each atomic site can be quantitatively described by similarity to common local structural motifs; by aggregating these unique features of similarity from the experimentally verified crystal structures of inorganic materials, LEAFs formulate a set of descriptors for chemical elements and compositions. The direct connection of LEAFs to the local coordination geometry enables the analysis of ML model property predictions, linking compositions to the underlying structure–property relationships. We demonstrate the versatility of LEAFs in structure-informed property predictions for compositions, mapping of chemical space in structural terms, and prioritisation of elemental substitutions. Based on the latter for predicting crystal structures of binary ionic compounds, LEAFs achieve the state-of-the-art accuracy of 86%. These results suggest that the structurally informed description of chemical elements and compositions developed in this work can effectively guide synthetic efforts in discovering new materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides Commit: Mini article for dynamic reporting of incremental improvements to previous scholarly work Artificial intelligence-assisted electrochemical sensors for qualitative and semi-quantitative multiplexed analyses† Exploring the expertise of large language models in materials science and metallurgical engineering†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1