Electrical Disintegration of Reinforced Concrete: Experiment and Simulation

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2025-02-12 DOI:10.1134/S1029959924601106
R. A. Bakeev, A. S. Yudin, N. S. Kuznetsova, D. V. Zhgun, Yu. P. Stefanov
{"title":"Electrical Disintegration of Reinforced Concrete: Experiment and Simulation","authors":"R. A. Bakeev,&nbsp;A. S. Yudin,&nbsp;N. S. Kuznetsova,&nbsp;D. V. Zhgun,&nbsp;Yu. P. Stefanov","doi":"10.1134/S1029959924601106","DOIUrl":null,"url":null,"abstract":"<p>The paper reports on physical experiments on disintegration of reinforced concrete by the electric pulse method based on the Vorobiev effect. Concrete is fractured under the action of a compression wave propagating from the discharge channel between the electrode on the concrete surface and the reinforcement. Disintegration experiments are conducted on pebble concrete. It is shown that a single pulse results in separate cracks in the material on retention of its integrity. Disintegration of concrete and cavitation at the point of application of the electrode begin after the second or third pulse. Computer simulation is made for the action of an expanding discharge channel on reinforced concrete. A structural model of reinforced concrete is plotted, explicitly taking into account its main constituents, namely, cement, stone inclusions, and reinforcement. The inelastic behavior of cement is described within the modified Drucker–Prager–Nikolaevsky model with the nonassociated flow rule for quasi-brittle media. Cracking is simulated using the fracture criterion based on tensile stresses. The performed numerical simulation confirms the conclusions of the physical experiment: a single pulse causes the formation of separate cracks parallel to the free surface, and the network of horizontal, vertical and inclined cracks appears in the cement after 2–3 pulses, resulting in a cavity at the point of application of the electrode. Cavitation in reinforced concrete is governed by the presence of stone inclusions, whose boundaries serve as sites of redistribution of maximum tensile stresses and formation of vertical and inclined cracks, as well as of accumulation of irreversible strains and stresses retained in the cement after the first pulse.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 1","pages":"101 - 110"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601106","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper reports on physical experiments on disintegration of reinforced concrete by the electric pulse method based on the Vorobiev effect. Concrete is fractured under the action of a compression wave propagating from the discharge channel between the electrode on the concrete surface and the reinforcement. Disintegration experiments are conducted on pebble concrete. It is shown that a single pulse results in separate cracks in the material on retention of its integrity. Disintegration of concrete and cavitation at the point of application of the electrode begin after the second or third pulse. Computer simulation is made for the action of an expanding discharge channel on reinforced concrete. A structural model of reinforced concrete is plotted, explicitly taking into account its main constituents, namely, cement, stone inclusions, and reinforcement. The inelastic behavior of cement is described within the modified Drucker–Prager–Nikolaevsky model with the nonassociated flow rule for quasi-brittle media. Cracking is simulated using the fracture criterion based on tensile stresses. The performed numerical simulation confirms the conclusions of the physical experiment: a single pulse causes the formation of separate cracks parallel to the free surface, and the network of horizontal, vertical and inclined cracks appears in the cement after 2–3 pulses, resulting in a cavity at the point of application of the electrode. Cavitation in reinforced concrete is governed by the presence of stone inclusions, whose boundaries serve as sites of redistribution of maximum tensile stresses and formation of vertical and inclined cracks, as well as of accumulation of irreversible strains and stresses retained in the cement after the first pulse.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢筋混凝土的电解体:实验与模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Structure and Properties of the Ribbon Produced from Fe-Co-Ni-Si-B Soft Magnetic Alloy by Spinning Oxygen and Nitrogen Diffusion in Titanium Nitride On the Propagation of Bulk Waves in Functionally Graded Beams with Consideration for Imperfection Lüders and Portevin–Le Chatelier Bands at the Stage of Elastoplastic Transition: Nucleation and Propagation Modeling the Response of Additively Manufactured Heterogeneous Metal-Ceramic Specimens to Dynamic Impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1