Beamforming optimization via quantum algorithms using Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm

IF 2.8 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2025-02-12 DOI:10.1049/qtc2.12120
Bidisha Dhara, Monika Agrawal, Sumantra Dutta Roy
{"title":"Beamforming optimization via quantum algorithms using Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm","authors":"Bidisha Dhara,&nbsp;Monika Agrawal,&nbsp;Sumantra Dutta Roy","doi":"10.1049/qtc2.12120","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the application of quantum algorithms, specifically the Variational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization Algorithm (QAOA), to design optimal sensor configurations for beamforming, enhancing signal quality and overall system performance. We propose two distinct optimization formulations: one aimed at maximising array gain while the other aimed at maximising signal-to-noise-interference ratio (SINR). Our findings show that the outputs obtained from quantum algorithms are consistent with those derived from classical methods.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12120","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.12120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of quantum algorithms, specifically the Variational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization Algorithm (QAOA), to design optimal sensor configurations for beamforming, enhancing signal quality and overall system performance. We propose two distinct optimization formulations: one aimed at maximising array gain while the other aimed at maximising signal-to-noise-interference ratio (SINR). Our findings show that the outputs obtained from quantum algorithms are consistent with those derived from classical methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变分量子特征解算器和量子近似优化算法的量子波束形成优化
本研究探讨了量子算法的应用,特别是变分量子特征求解器(VQE)和量子近似优化算法(QAOA),以设计最佳的传感器配置,以实现波束形成,提高信号质量和整体系统性能。我们提出了两种不同的优化公式:一种旨在最大化阵列增益,另一种旨在最大化信噪比(SINR)。我们的研究结果表明,量子算法得到的输出与经典方法得到的输出一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Research on PID Parameter Optimisation for BP Neural Network Based on Improved Quantum Genetic Algorithm A Quantum Key Distribution System for Mobile Platforms With Highly Indistinguishable States Tamper Localisation Using Quantum Fourier Transform Signatures for Medical Image Authentication Quantum–Classical Hybrid Architecture for Solving the Muskat–Leverett Model Feasibility of Quantum Key Distribution Between Supersonic Aircraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1