Anthropogenic Disturbances Superimpose Climate Effects on Soil Organic Carbon in Savanna Woodlands of Sub-Saharan Africa

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Global Biogeochemical Cycles Pub Date : 2025-02-13 DOI:10.1029/2023GB008086
F. Jorge, N. Mutwale-Mutale, A. Sandhage-Hofmann, M. Braun, A. Cambule, A. Nhantumbo, L. M. Chabala, C. Shepande, B. Chishala, S. Lisboa, M. Matangue, M. Schmidt, W. Amelung
{"title":"Anthropogenic Disturbances Superimpose Climate Effects on Soil Organic Carbon in Savanna Woodlands of Sub-Saharan Africa","authors":"F. Jorge,&nbsp;N. Mutwale-Mutale,&nbsp;A. Sandhage-Hofmann,&nbsp;M. Braun,&nbsp;A. Cambule,&nbsp;A. Nhantumbo,&nbsp;L. M. Chabala,&nbsp;C. Shepande,&nbsp;B. Chishala,&nbsp;S. Lisboa,&nbsp;M. Matangue,&nbsp;M. Schmidt,&nbsp;W. Amelung","doi":"10.1029/2023GB008086","DOIUrl":null,"url":null,"abstract":"<p>Savanna ecosystems in sub-Saharan Africa harbor substantial yet relatively unexplored reserves of soil organic carbon (SOC). Our study unravels for the first time the interplay between climate, reference soil groups, and anthropogenic disturbances in shaping SOC dynamics in these ecosystems. We analyzed SOC along climosequences in natural woodlands in Mozambique and Zambia, with mean annual temperature (MAT) of 20–24°C, and mean annual precipitation (MAP) of 365–1,227 mm. Anthropogenic disturbances were assessed through comprehensive field surveys and remote sensing of vegetation and indices change. MAT and evapotranspiration (PET) had no discernible effect on SOC. Bulk SOC, particulate organic matter, and mineral-associated organic matter stocks in the topsoil (0–10 cm) increased with MAP, though this relationship was not significant for the subsoil. MAP explained only 35% of topsoil SOC variability, limited by anthropogenic disturbances, which raised SOC stocks in the dry savanna but resulted in SOC losses at &gt;600 mm MAP, which even extended into subsoil. For sites with little disturbance in the past decades, there were soil group-specific effects of MAP on SOC, explaining up to 85% of data variability. In disturbed sites, human presence altered the carbon (C) balance to an extent that, as rough estimate, could account for up to 2.6 Gt CO<sub>2</sub>-C loss over 20 years in wetter sites, with another 2.4 Gt CO<sub>2</sub>-C at risk as populations spread into these otherwise pristine environments. Accurate modeling of climate-change effects on the C cycle must therefore include the transformative impacts of current human activities, such as wood harvesting and grazing.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB008086","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Savanna ecosystems in sub-Saharan Africa harbor substantial yet relatively unexplored reserves of soil organic carbon (SOC). Our study unravels for the first time the interplay between climate, reference soil groups, and anthropogenic disturbances in shaping SOC dynamics in these ecosystems. We analyzed SOC along climosequences in natural woodlands in Mozambique and Zambia, with mean annual temperature (MAT) of 20–24°C, and mean annual precipitation (MAP) of 365–1,227 mm. Anthropogenic disturbances were assessed through comprehensive field surveys and remote sensing of vegetation and indices change. MAT and evapotranspiration (PET) had no discernible effect on SOC. Bulk SOC, particulate organic matter, and mineral-associated organic matter stocks in the topsoil (0–10 cm) increased with MAP, though this relationship was not significant for the subsoil. MAP explained only 35% of topsoil SOC variability, limited by anthropogenic disturbances, which raised SOC stocks in the dry savanna but resulted in SOC losses at >600 mm MAP, which even extended into subsoil. For sites with little disturbance in the past decades, there were soil group-specific effects of MAP on SOC, explaining up to 85% of data variability. In disturbed sites, human presence altered the carbon (C) balance to an extent that, as rough estimate, could account for up to 2.6 Gt CO2-C loss over 20 years in wetter sites, with another 2.4 Gt CO2-C at risk as populations spread into these otherwise pristine environments. Accurate modeling of climate-change effects on the C cycle must therefore include the transformative impacts of current human activities, such as wood harvesting and grazing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人为干扰叠加气候对撒哈拉以南非洲热带稀树草原林地土壤有机碳的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
期刊最新文献
Carbon and Nitrogen Isoscapes of Particulate Organic Matter in the Pacific Ocean Anthropogenic Disturbances Superimpose Climate Effects on Soil Organic Carbon in Savanna Woodlands of Sub-Saharan Africa Trends in Sea-Air CO2 Fluxes and Sensitivities to Atmospheric Forcing Using an Extremely Randomized Trees Machine Learning Approach A New Framework for the Attribution of Air-Sea CO2 Exchange Nitrogen Biogeochemistry of Adjacent Mesoscale Eddies in the North Pacific Subtropical Gyre
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1