Compositional shifts and co-occurrence patterns of topsoil bacteria and micro-eukaryotes across a permafrost thaw gradient in alpine meadows of the Qilian Mountains, China.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-02-12 DOI:10.1128/aem.01955-24
Zhu Wang, Yang Liu, Fang Wang
{"title":"Compositional shifts and co-occurrence patterns of topsoil bacteria and micro-eukaryotes across a permafrost thaw gradient in alpine meadows of the Qilian Mountains, China.","authors":"Zhu Wang, Yang Liu, Fang Wang","doi":"10.1128/aem.01955-24","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microorganisms play a pivotal role in the biogeochemical cycles of alpine meadow ecosystems, especially in the context of permafrost thaw. However, the mechanisms driving microbial community responses to environmental changes, such as variations in active layer thickness (ALT) of permafrost, remain poorly understood. This study utilized next-generation sequencing to explore the composition and co-occurrence patterns of soil microbial communities, focusing on bacteria and micro-eukaryotes along a permafrost thaw gradient. The results showed a decline in bacterial alpha diversity with increasing permafrost thaw, whereas micro-eukaryotic diversity exhibited an opposite trend. Although changes in microbial community composition were observed in permafrost and seasonally frozen soils, these shifts were not statistically significant. Bacterial communities exhibited a greater differentiation between frozen and seasonally frozen soils, a pattern not mirrored in eukaryotic communities. Linear discriminant analysis effect size analysis revealed a higher number of potential biomarkers in bacterial communities compared with micro-eukaryotes. Bacterial co-occurrence networks were more complex, with more nodes, edges, and positive linkages than those of micro-eukaryotes. Key factors such as soil texture, ALT, and bulk density significantly influenced bacterial community structures, particularly affecting the relative abundances of the Acidobacteria, Proteobacteria, and Actinobacteria phyla. In contrast, fungal communities (e.g., <i>Nucletmycea</i>, <i>Rhizaria</i>, <i>Chloroplastida</i>, and <i>Discosea</i> groups) were more affected by electrical conductivity, vegetation coverage, and ALT. This study highlights the distinct responses of soil bacteria and micro-eukaryotes to permafrost thaw, offering insights into microbial community stability under global climate change.IMPORTANCEThis study sheds light on how permafrost thaw affects microbial life in the soil, with broader implications for understanding climate change impacts. As permafrost degrades, it alters the types and numbers of microbes in the soil. These microbes play essential roles in environmental processes, such as nutrient cycling and greenhouse gas emissions. By observing shifts from bacteria-dominated to fungi-dominated communities as permafrost thaws, the study highlights potential changes in these processes. Importantly, this research suggests that the stability of microbial networks decreases with permafrost degradation, potentially disrupting the delicate balance of these ecosystems. The findings not only deepen our understanding of microbial responses to changing climates but also support the development of strategies to monitor and potentially mitigate the effects of climate change on fragile high-altitude ecosystems.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0195524"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01955-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microorganisms play a pivotal role in the biogeochemical cycles of alpine meadow ecosystems, especially in the context of permafrost thaw. However, the mechanisms driving microbial community responses to environmental changes, such as variations in active layer thickness (ALT) of permafrost, remain poorly understood. This study utilized next-generation sequencing to explore the composition and co-occurrence patterns of soil microbial communities, focusing on bacteria and micro-eukaryotes along a permafrost thaw gradient. The results showed a decline in bacterial alpha diversity with increasing permafrost thaw, whereas micro-eukaryotic diversity exhibited an opposite trend. Although changes in microbial community composition were observed in permafrost and seasonally frozen soils, these shifts were not statistically significant. Bacterial communities exhibited a greater differentiation between frozen and seasonally frozen soils, a pattern not mirrored in eukaryotic communities. Linear discriminant analysis effect size analysis revealed a higher number of potential biomarkers in bacterial communities compared with micro-eukaryotes. Bacterial co-occurrence networks were more complex, with more nodes, edges, and positive linkages than those of micro-eukaryotes. Key factors such as soil texture, ALT, and bulk density significantly influenced bacterial community structures, particularly affecting the relative abundances of the Acidobacteria, Proteobacteria, and Actinobacteria phyla. In contrast, fungal communities (e.g., Nucletmycea, Rhizaria, Chloroplastida, and Discosea groups) were more affected by electrical conductivity, vegetation coverage, and ALT. This study highlights the distinct responses of soil bacteria and micro-eukaryotes to permafrost thaw, offering insights into microbial community stability under global climate change.IMPORTANCEThis study sheds light on how permafrost thaw affects microbial life in the soil, with broader implications for understanding climate change impacts. As permafrost degrades, it alters the types and numbers of microbes in the soil. These microbes play essential roles in environmental processes, such as nutrient cycling and greenhouse gas emissions. By observing shifts from bacteria-dominated to fungi-dominated communities as permafrost thaws, the study highlights potential changes in these processes. Importantly, this research suggests that the stability of microbial networks decreases with permafrost degradation, potentially disrupting the delicate balance of these ecosystems. The findings not only deepen our understanding of microbial responses to changing climates but also support the development of strategies to monitor and potentially mitigate the effects of climate change on fragile high-altitude ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Campylobacter jejuni ST353 and ST464 cause localized gut inflammation, crypt damage, and extraintestinal spread during large- and small-scale infection in broiler chickens. Diversity and abundance of filamentous and non-filamentous "Leptothrix" in global wastewater treatment plants. Cometabolism of ferrihydrite reduction and methyl-dismutating methanogenesis by Methanosarcina mazei. Deciphering reductive dehalogenase specificity through targeted mutagenesis of chloroalkane reductases. Autoinducer-2 signaling promotes intestinal colonization of Aeromonas veronii and induces cell apoptosis in loach (Misgurnus anguillicaudatus).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1