scMFG: a single-cell multi-omics integration method based on feature grouping.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-02-11 DOI:10.1186/s12864-025-11319-0
Litian Ma, Jingtao Liu, Wei Sun, Chenguang Zhao, Liang Yu
{"title":"scMFG: a single-cell multi-omics integration method based on feature grouping.","authors":"Litian Ma, Jingtao Liu, Wei Sun, Chenguang Zhao, Liang Yu","doi":"10.1186/s12864-025-11319-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in methodologies and technologies have enabled the simultaneous measurement of multiple omics data, which provides a comprehensive understanding of cellular heterogeneity. However, existing methods have limitations in accurately identifying cell types while maintaining model interpretability, especially in the presence of noise.</p><p><strong>Methods: </strong>We propose a novel method called scMFG, which leverages feature grouping and group integration techniques for the integration of single-cell multi-omics data. By organizing features with similar characteristics within each omics layer through feature grouping. Furthermore, scMFG ensures a consistent feature grouping approach across different omics layers, promoting comparability of diverse data types. Additionally, scMFG incorporates a matrix factorization-based approach to enable the integrated results remain interpretable.</p><p><strong>Results: </strong>We comprehensively evaluated scMFG's performance on four complex real-world datasets generated using diverse sequencing technologies, highlighting its robustness in accurately identifying cell types. Notably, scMFG exhibited superior performance in deciphering cellular heterogeneity at a finer resolution compared to existing methods when applied to simulated datasets. Furthermore, our method proved highly effective in identifying rare cell types, showcasing its robust performance and suitability for detecting low-abundance cellular populations. The interpretability of scMFG was successfully validated through its specific association of outputs with specific cell types or states observed in the neonatal mouse cerebral cortices dataset. Moreover, we demonstrated that scMFG is capable of identifying cell developmental trajectories even in datasets with batch effects.</p><p><strong>Conclusions: </strong>Our work presents a robust framework for the analysis of single-cell multi-omics data, advancing our understanding of cellular heterogeneity in a comprehensive and interpretable manner.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"132"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11319-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent advancements in methodologies and technologies have enabled the simultaneous measurement of multiple omics data, which provides a comprehensive understanding of cellular heterogeneity. However, existing methods have limitations in accurately identifying cell types while maintaining model interpretability, especially in the presence of noise.

Methods: We propose a novel method called scMFG, which leverages feature grouping and group integration techniques for the integration of single-cell multi-omics data. By organizing features with similar characteristics within each omics layer through feature grouping. Furthermore, scMFG ensures a consistent feature grouping approach across different omics layers, promoting comparability of diverse data types. Additionally, scMFG incorporates a matrix factorization-based approach to enable the integrated results remain interpretable.

Results: We comprehensively evaluated scMFG's performance on four complex real-world datasets generated using diverse sequencing technologies, highlighting its robustness in accurately identifying cell types. Notably, scMFG exhibited superior performance in deciphering cellular heterogeneity at a finer resolution compared to existing methods when applied to simulated datasets. Furthermore, our method proved highly effective in identifying rare cell types, showcasing its robust performance and suitability for detecting low-abundance cellular populations. The interpretability of scMFG was successfully validated through its specific association of outputs with specific cell types or states observed in the neonatal mouse cerebral cortices dataset. Moreover, we demonstrated that scMFG is capable of identifying cell developmental trajectories even in datasets with batch effects.

Conclusions: Our work presents a robust framework for the analysis of single-cell multi-omics data, advancing our understanding of cellular heterogeneity in a comprehensive and interpretable manner.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01. A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development. The case-only design is a powerful approach to detect interactions but should be used with caution. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. Analysis and identification of mitochondria-related genes associated with age-related hearing loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1