Hao Tian, Yi Ge, Jianjun Yu, Xing Chen, Honghan Wang, Xu Cai, Zhenfeng Shan, Liang Zuo, Yan Liu
{"title":"CPT1A mediates succinylation of LDHA at K318 site promoteing metabolic reprogramming in NK/T-cell lymphoma nasal type.","authors":"Hao Tian, Yi Ge, Jianjun Yu, Xing Chen, Honghan Wang, Xu Cai, Zhenfeng Shan, Liang Zuo, Yan Liu","doi":"10.1007/s10565-025-09994-6","DOIUrl":null,"url":null,"abstract":"<p><p>Carnitine palmitoyltransferase 1A (CPT1A), a succinylating enzyme, is highly expressed in various malignant tumors and promotes tumor progression. Succinylation is a posttranslational modification that has been reported in various diseases, but its role in NK/T-Cell lymphoma nasal type (ENKTL-NT) remains underexplored. In this study, bioinformatics analysis showed that glycolytic is a major metabolic pathway in ENKTL-NT as the expression of many glycolytic related kinases are increased. CPT1A probably mediates glycolytic process, as indicated by GO-enrichment analysis. Studies showed that CPT1A was upregulated in ENKTL-NT tissues, and that high CPT1A expression was associated with poor prognosis of ENKTL-NT. CPT1A promoted the proliferation, colony formation, invasion and glycolytic process of ENKTL-NT cells and suppresses apoptosis. Mechanistically, CPT1A promotes succinylation of LDHA at lysine 318 (K318), which increase the protein stability and the final protein level of LDHA. Both knockdown and mutation (K318R) of LDHA abolished the cancer-promoting effects of CPT1A in ENKTL-NT. In all, this study reveals the mechanism underlying the cancer-promoting effects of CPT1A via inducing LDHA succinylation and metabolic reprogramming in ENKTL-NT. These findings might provide potential targets for the diagnosis or therapy of ENKTL-NT.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"42"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-09994-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carnitine palmitoyltransferase 1A (CPT1A), a succinylating enzyme, is highly expressed in various malignant tumors and promotes tumor progression. Succinylation is a posttranslational modification that has been reported in various diseases, but its role in NK/T-Cell lymphoma nasal type (ENKTL-NT) remains underexplored. In this study, bioinformatics analysis showed that glycolytic is a major metabolic pathway in ENKTL-NT as the expression of many glycolytic related kinases are increased. CPT1A probably mediates glycolytic process, as indicated by GO-enrichment analysis. Studies showed that CPT1A was upregulated in ENKTL-NT tissues, and that high CPT1A expression was associated with poor prognosis of ENKTL-NT. CPT1A promoted the proliferation, colony formation, invasion and glycolytic process of ENKTL-NT cells and suppresses apoptosis. Mechanistically, CPT1A promotes succinylation of LDHA at lysine 318 (K318), which increase the protein stability and the final protein level of LDHA. Both knockdown and mutation (K318R) of LDHA abolished the cancer-promoting effects of CPT1A in ENKTL-NT. In all, this study reveals the mechanism underlying the cancer-promoting effects of CPT1A via inducing LDHA succinylation and metabolic reprogramming in ENKTL-NT. These findings might provide potential targets for the diagnosis or therapy of ENKTL-NT.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.