Evolutionary multi-agent reinforcement learning in group social dilemmas.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED Chaos Pub Date : 2025-02-01 DOI:10.1063/5.0246332
B Mintz, F Fu
{"title":"Evolutionary multi-agent reinforcement learning in group social dilemmas.","authors":"B Mintz, F Fu","doi":"10.1063/5.0246332","DOIUrl":null,"url":null,"abstract":"<p><p>Reinforcement learning (RL) is a powerful machine learning technique that has been successfully applied to a wide variety of problems. However, it can be unpredictable and produce suboptimal results in complicated learning environments. This is especially true when multiple agents learn simultaneously, which creates a complex system that is often analytically intractable. Our work considers the fundamental framework of Q-learning in public goods games, where RL individuals must work together to achieve a common goal. This setting allows us to study the tragedy of the commons and free-rider effects in artificial intelligence cooperation, an emerging field with potential to resolve challenging obstacles to the wider application of artificial intelligence. While this social dilemma has been mainly investigated through traditional and evolutionary game theory, our work connects these two approaches by studying agents with an intermediate level of intelligence. We consider the influence of learning parameters on cooperation levels in simulations and a limiting system of differential equations, as well as the effect of evolutionary pressures on exploration rate in both of these models. We find selection for higher and lower levels of exploration, as well as attracting values, and a condition that separates these in a restricted class of games. Our work enhances the theoretical understanding of recent techniques that combine evolutionary algorithms with Q-learning and extends our knowledge of the evolution of machine behavior in social dilemmas.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0246332","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement learning (RL) is a powerful machine learning technique that has been successfully applied to a wide variety of problems. However, it can be unpredictable and produce suboptimal results in complicated learning environments. This is especially true when multiple agents learn simultaneously, which creates a complex system that is often analytically intractable. Our work considers the fundamental framework of Q-learning in public goods games, where RL individuals must work together to achieve a common goal. This setting allows us to study the tragedy of the commons and free-rider effects in artificial intelligence cooperation, an emerging field with potential to resolve challenging obstacles to the wider application of artificial intelligence. While this social dilemma has been mainly investigated through traditional and evolutionary game theory, our work connects these two approaches by studying agents with an intermediate level of intelligence. We consider the influence of learning parameters on cooperation levels in simulations and a limiting system of differential equations, as well as the effect of evolutionary pressures on exploration rate in both of these models. We find selection for higher and lower levels of exploration, as well as attracting values, and a condition that separates these in a restricted class of games. Our work enhances the theoretical understanding of recent techniques that combine evolutionary algorithms with Q-learning and extends our knowledge of the evolution of machine behavior in social dilemmas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群体社会困境中的进化多代理强化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
期刊最新文献
A logarithm law for non-autonomous systems rapidly converging to equilibrium and mean field coupled systems. Diffusive transport through a double-cone channel under stochastic resetting. Directed transport of particles in coupled fractional-order systems excited by Lévy noise. Dissipative fractional standard maps: Riemann-Liouville and Caputo. Evolutionary dynamics of cooperation driven by a mixed update rule in structured prisoner's dilemma games.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1