Forensic dental age estimation with deep learning: a modified xception model for panoramic X-Ray images.

IF 1.5 4区 医学 Q2 MEDICINE, LEGAL Forensic Science, Medicine and Pathology Pub Date : 2025-02-12 DOI:10.1007/s12024-025-00962-4
Ercument Yilmaz, Cansu Görürgöz, Hatice Cansu Kış, Emin Murat Canger, Bengi Öztaş
{"title":"Forensic dental age estimation with deep learning: a modified xception model for panoramic X-Ray images.","authors":"Ercument Yilmaz, Cansu Görürgöz, Hatice Cansu Kış, Emin Murat Canger, Bengi Öztaş","doi":"10.1007/s12024-025-00962-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop an improved method for forensic age estimation using deep learning models applied to orthopantomography (OPG) images, focusing on distinguishing individuals under 12 years old from those aged 12 and above.</p><p><strong>Methods: </strong>A dataset of 1941 pediatric patients aged between five and 15 years was collected from two radiology departments. The primary research question addressed the identification of the most effective deep learning model for this task. Various deep learning models including Xception, ResNet, ShuffleNet, InceptionV3, DarkNet, NasNet, DenseNet, EfficientNet, MobileNet, ResNet18, GoogleNet, SqueezeNet, and AlexNet were evaluated using traditional metrics like Classification Accuracy (CA), Sensitivity (SE), Specificity (SP), Kappa (K), Area Under the Curve (AUC), alongside a novel Polygon Area Metric (PAM) designed to handle imbalanced datasets common in forensic applications.</p><p><strong>Results: </strong>\"Forensic Xception\" model derived from Xception outperformed others, achieving a PAM score of 0.8828. This model demonstrated superior performance in accurately classifying individuals' age groups, with high CA, SE, SP, K, AUC, and F1 Score. Notably, the introduction of the PAM metric provided a comprehensive evaluation of classifier performance.</p><p><strong>Conclusion: </strong>This study represents a significant advancement in forensic age estimation from OPG images, emphasizing the potential of deep learning models, particularly the \"Forensic Xception\" model, in accurately classifying individuals based on age, especially in legal contexts. This research suggests a promising avenue for further advancements in forensic dental age estimation, with future studies encouraged to explore additional datasets, refine models, and address ethical and legal considerations.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-025-00962-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to develop an improved method for forensic age estimation using deep learning models applied to orthopantomography (OPG) images, focusing on distinguishing individuals under 12 years old from those aged 12 and above.

Methods: A dataset of 1941 pediatric patients aged between five and 15 years was collected from two radiology departments. The primary research question addressed the identification of the most effective deep learning model for this task. Various deep learning models including Xception, ResNet, ShuffleNet, InceptionV3, DarkNet, NasNet, DenseNet, EfficientNet, MobileNet, ResNet18, GoogleNet, SqueezeNet, and AlexNet were evaluated using traditional metrics like Classification Accuracy (CA), Sensitivity (SE), Specificity (SP), Kappa (K), Area Under the Curve (AUC), alongside a novel Polygon Area Metric (PAM) designed to handle imbalanced datasets common in forensic applications.

Results: "Forensic Xception" model derived from Xception outperformed others, achieving a PAM score of 0.8828. This model demonstrated superior performance in accurately classifying individuals' age groups, with high CA, SE, SP, K, AUC, and F1 Score. Notably, the introduction of the PAM metric provided a comprehensive evaluation of classifier performance.

Conclusion: This study represents a significant advancement in forensic age estimation from OPG images, emphasizing the potential of deep learning models, particularly the "Forensic Xception" model, in accurately classifying individuals based on age, especially in legal contexts. This research suggests a promising avenue for further advancements in forensic dental age estimation, with future studies encouraged to explore additional datasets, refine models, and address ethical and legal considerations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Forensic Science, Medicine and Pathology
Forensic Science, Medicine and Pathology MEDICINE, LEGAL-PATHOLOGY
CiteScore
3.90
自引率
5.60%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.
期刊最新文献
Invasive aspergillosis leading to fatal cerebral hemorrhage: a case report and comprehensive literature review. Exsanguination from an arteriovenous dialysis fistula: accident, suicide or medical malpractice? A singular case of complex suicide by hanging with hesitation marks by axe. Sex estimation with convolutional neural networks using the patella magnetic resonance image slices. Death in the mountains requires extensive forensic considerations and investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1