DYNC2H1 mutation as a potential predictive biomarker for immune checkpoint inhibitor efficacy in NSCLC and melanoma.

IF 3 3区 医学 Q2 ONCOLOGY Investigational New Drugs Pub Date : 2025-02-12 DOI:10.1007/s10637-024-01495-3
Lu Yang, Yanlong Feng, Xuewen Liu, Qin Zhang, Yaqin Liu, Xing Zhang, Ping Li, Dongsheng Chen
{"title":"DYNC2H1 mutation as a potential predictive biomarker for immune checkpoint inhibitor efficacy in NSCLC and melanoma.","authors":"Lu Yang, Yanlong Feng, Xuewen Liu, Qin Zhang, Yaqin Liu, Xing Zhang, Ping Li, Dongsheng Chen","doi":"10.1007/s10637-024-01495-3","DOIUrl":null,"url":null,"abstract":"<p><p>Dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) is reported to play a potential role in cancer immunotherapy. However, the association between DYNC2H1 mutation and the clinical benefit of immunotherapy in non-small cell lung cancer (NSCLC) and melanoma remains to be elucidated. We collected data from three public immune checkpoint inhibitor (ICI)-treated NSCLC cohorts (n = 137 in total) and seven ICI-treated melanoma cohorts (n = 418 in total) to explore the potential of DYNC2H1 mutation as a predictive biomarker. The clinical outcomes, including the objective response rate (ORR) and progression-free survival (PFS), of patients with DYNC2H1 mutations are significantly better than those of patients with wild-type DYNC2H1. Multivariate Cox regression analysis confirmed that DYNC2H1 mutation was an independent predictive factor for ICI efficacy in NSCLC and melanoma. In addition, DYNC2H1 mutation exhibited no prognostic value for NSCLC or melanoma. Tumour mutational burden (TMB) and tumour neoantigen burden (TNB) were significantly higher in patients with DYNC2H1 mutation than in those with wild-type DYNC2H1 in both NSCLC and melanoma cohort. The analysis of immune-related genes and immune cell enrichment revealed an association between DYNC2H1 mutation and increased immune infiltration, revealing a potential mechanism underlying the predictive role of DYNC2H1 mutation in immunotherapy efficacy. In conclusion, DYNC2H1 mutation serves as a predictive biomarker of ICI efficacy in NSCLC and melanoma.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-024-01495-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) is reported to play a potential role in cancer immunotherapy. However, the association between DYNC2H1 mutation and the clinical benefit of immunotherapy in non-small cell lung cancer (NSCLC) and melanoma remains to be elucidated. We collected data from three public immune checkpoint inhibitor (ICI)-treated NSCLC cohorts (n = 137 in total) and seven ICI-treated melanoma cohorts (n = 418 in total) to explore the potential of DYNC2H1 mutation as a predictive biomarker. The clinical outcomes, including the objective response rate (ORR) and progression-free survival (PFS), of patients with DYNC2H1 mutations are significantly better than those of patients with wild-type DYNC2H1. Multivariate Cox regression analysis confirmed that DYNC2H1 mutation was an independent predictive factor for ICI efficacy in NSCLC and melanoma. In addition, DYNC2H1 mutation exhibited no prognostic value for NSCLC or melanoma. Tumour mutational burden (TMB) and tumour neoantigen burden (TNB) were significantly higher in patients with DYNC2H1 mutation than in those with wild-type DYNC2H1 in both NSCLC and melanoma cohort. The analysis of immune-related genes and immune cell enrichment revealed an association between DYNC2H1 mutation and increased immune infiltration, revealing a potential mechanism underlying the predictive role of DYNC2H1 mutation in immunotherapy efficacy. In conclusion, DYNC2H1 mutation serves as a predictive biomarker of ICI efficacy in NSCLC and melanoma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
121
审稿时长
1 months
期刊介绍: The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.
期刊最新文献
Progress of KRAS G12C inhibitors in the treatment of refractory colorectal cancer and strategies for drug resistance response. Cardioprotective effects of PARP inhibitors for platinum-agent induced cardiotoxicity. HDAC6 inhibition through WT161 synergizes with temozolomide, induces apoptosis, reduces cell motility, and decreases β-catenin levels in glioblastoma cells. Efficacy and safety of fruquintinib plus capecitabine as first-line treatment in patients with metastatic colorectal cancer ineligible for intravenous chemotherapy: a two-stage, single-armed, phase II study. DYNC2H1 mutation as a potential predictive biomarker for immune checkpoint inhibitor efficacy in NSCLC and melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1