Golden Tandem of Photothermal Ablation and Simultaneous Anti-Inflammation in One Nanoparticle for Activated Macrophage-Targeted Atherosclerosis Treatment.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY International Journal of Nanomedicine Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S503774
Yuqing Lu, Yan Wang, Yize Li, Yunan Li, Yao-Wen Jiang, Jingjing Li
{"title":"Golden Tandem of Photothermal Ablation and Simultaneous Anti-Inflammation in One Nanoparticle for Activated Macrophage-Targeted Atherosclerosis Treatment.","authors":"Yuqing Lu, Yan Wang, Yize Li, Yunan Li, Yao-Wen Jiang, Jingjing Li","doi":"10.2147/IJN.S503774","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Photothermal therapy (PTT) is attracting increasing attention in treating atherosclerotic plaques. However, PTT can induce inflammatory responses, in turn stimulating the regeneration of atherosclerosis and hindering subsequent therapy.</p><p><strong>Methods: </strong>In this paper, a multifunctional nanoparticle (Au NR@SiO<sub>2</sub>/RSNO/DS, GSNPD) for the synergistic treatment of atherosclerosis through PTT and anti-inflammation effects was developed. The preparation and characterization of GSNPD, their cellular toxicity, photothermal conversion and targeted ablation efficiency, anti-inflammation and ROS scavenging effect, as well as the inhibition of foam cell formation were studied in vitro.</p><p><strong>Results: </strong>The experimental results showed that the fabricated GSNPD NPs displayed positive effects on anti-atherosclerosis by pro-inflammatory macrophages ablation, NO production and ROS scavenging.</p><p><strong>Discussion: </strong>GSNPD NPs were designed to effectively and accurately ablate pro-inflammatory macrophages by recognizing and targeting to SR-A overexpressed on the activated macrophages of arterial plaques via PTT, and simultaneous inhibit the PTT-induced inflammation through the laser-activated NO release in situ. This match of therapeutic agents and inhibitors not only achieves good therapeutic effects but also minimizes side effects as much as possible, which may provide an effective way for PTT-based treatment of atherosclerosis.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"1731-1746"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S503774","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Photothermal therapy (PTT) is attracting increasing attention in treating atherosclerotic plaques. However, PTT can induce inflammatory responses, in turn stimulating the regeneration of atherosclerosis and hindering subsequent therapy.

Methods: In this paper, a multifunctional nanoparticle (Au NR@SiO2/RSNO/DS, GSNPD) for the synergistic treatment of atherosclerosis through PTT and anti-inflammation effects was developed. The preparation and characterization of GSNPD, their cellular toxicity, photothermal conversion and targeted ablation efficiency, anti-inflammation and ROS scavenging effect, as well as the inhibition of foam cell formation were studied in vitro.

Results: The experimental results showed that the fabricated GSNPD NPs displayed positive effects on anti-atherosclerosis by pro-inflammatory macrophages ablation, NO production and ROS scavenging.

Discussion: GSNPD NPs were designed to effectively and accurately ablate pro-inflammatory macrophages by recognizing and targeting to SR-A overexpressed on the activated macrophages of arterial plaques via PTT, and simultaneous inhibit the PTT-induced inflammation through the laser-activated NO release in situ. This match of therapeutic agents and inhibitors not only achieves good therapeutic effects but also minimizes side effects as much as possible, which may provide an effective way for PTT-based treatment of atherosclerosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
期刊最新文献
Development of a Sensitive Quantum Dot-Linked Immunoassay for the Multiplex Detection of Biochemical Markers in a Microvolumeric Format. Golden Tandem of Photothermal Ablation and Simultaneous Anti-Inflammation in One Nanoparticle for Activated Macrophage-Targeted Atherosclerosis Treatment. Injectable Nanocomposite Hydrogel for Accelerating Diabetic Wound Healing Through Inflammatory Microenvironment Regulation. Development and Characterization of a Hydrogel Containing Chloramphenicol-Loaded Binary Ethosomes for Effective Transdermal Permeation and Treatment Acne in Rat Model. Intervening Non-Small-Cell Lung Cancer Progression by Cell Membrane Coated Platycodin D via Regulating Hsa-miR-1246/FUT9/GSK3β Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1