Smart Pharmaceutical Monitoring System With Personalized Medication Schedules and Self-Management Programs for Patients With Diabetes: Development and Evaluation Study.
{"title":"Smart Pharmaceutical Monitoring System With Personalized Medication Schedules and Self-Management Programs for Patients With Diabetes: Development and Evaluation Study.","authors":"Jian Xiao, Mengyao Li, Ruwen Cai, Hangxing Huang, Huimin Yu, Ling Huang, Jingyang Li, Ting Yu, Jiani Zhang, Shuqiao Cheng","doi":"10.2196/56737","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the climbing incidence of type 2 diabetes, the health care system is under pressure to manage patients with this condition properly. Particularly, pharmacological therapy constitutes the most fundamental means of controlling blood glucose levels and preventing the progression of complications. However, its effectiveness is often hindered by factors such as treatment complexity, polypharmacy, and poor patient adherence. As new technologies, artificial intelligence and digital technologies are covering all aspects of the medical and health care field, but their application and evaluation in the domain of diabetes research remain limited.</p><p><strong>Objective: </strong>This study aims to develop and establish a stand-alone diabetes management service system designed to enhance self-management support for patients, as well as to assess its performance with experienced health care professionals.</p><p><strong>Methods: </strong>Diabetes Universal Medication Schedule (DUMS) system is grounded in official medicine instructions and evidence-based data to establish medication constraints and drug-drug interaction profiles. Individualized medication schedules and self-management programs were generated based on patient-specific conditions and needs, using an app framework to build patient-side contact pathways. The system's ability to provide medication guidance and health management was assessed by senior health care professionals using a 5-point Likert scale across 3 groups: outputs generated by the system (DUMS group), outputs refined by pharmacists (intervention group), and outputs generated by ChatGPT-4 (GPT-4 group).</p><p><strong>Results: </strong>We constructed a cloud-based drug information management system loaded with 475 diabetes treatment-related medications; 684 medication constraints; and 12,351 drug-drug interactions and theoretical supports. The generated personalized medication plan and self-management program included recommended dosing times, disease education, dietary considerations, and lifestyle recommendations to help patients with diabetes achieve correct medication use and active disease management. Reliability analysis demonstrated that the DUMS group outperformed the GPT-4 group in medication schedule accuracy and safety, as well as comprehensiveness and richness of the self-management program (P<.001). The intervention group outperformed the DUMS and GPT-4 groups on all indicator scores.</p><p><strong>Conclusions: </strong>DUMS's treatment monitoring service can provide reliable self-management support for patients with diabetes. ChatGPT-4, powered by artificial intelligence, can act as a collaborative assistant to health care professionals in clinical contexts, although its performance still requires further training and optimization.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e56737"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/56737","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: With the climbing incidence of type 2 diabetes, the health care system is under pressure to manage patients with this condition properly. Particularly, pharmacological therapy constitutes the most fundamental means of controlling blood glucose levels and preventing the progression of complications. However, its effectiveness is often hindered by factors such as treatment complexity, polypharmacy, and poor patient adherence. As new technologies, artificial intelligence and digital technologies are covering all aspects of the medical and health care field, but their application and evaluation in the domain of diabetes research remain limited.
Objective: This study aims to develop and establish a stand-alone diabetes management service system designed to enhance self-management support for patients, as well as to assess its performance with experienced health care professionals.
Methods: Diabetes Universal Medication Schedule (DUMS) system is grounded in official medicine instructions and evidence-based data to establish medication constraints and drug-drug interaction profiles. Individualized medication schedules and self-management programs were generated based on patient-specific conditions and needs, using an app framework to build patient-side contact pathways. The system's ability to provide medication guidance and health management was assessed by senior health care professionals using a 5-point Likert scale across 3 groups: outputs generated by the system (DUMS group), outputs refined by pharmacists (intervention group), and outputs generated by ChatGPT-4 (GPT-4 group).
Results: We constructed a cloud-based drug information management system loaded with 475 diabetes treatment-related medications; 684 medication constraints; and 12,351 drug-drug interactions and theoretical supports. The generated personalized medication plan and self-management program included recommended dosing times, disease education, dietary considerations, and lifestyle recommendations to help patients with diabetes achieve correct medication use and active disease management. Reliability analysis demonstrated that the DUMS group outperformed the GPT-4 group in medication schedule accuracy and safety, as well as comprehensiveness and richness of the self-management program (P<.001). The intervention group outperformed the DUMS and GPT-4 groups on all indicator scores.
Conclusions: DUMS's treatment monitoring service can provide reliable self-management support for patients with diabetes. ChatGPT-4, powered by artificial intelligence, can act as a collaborative assistant to health care professionals in clinical contexts, although its performance still requires further training and optimization.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.